
Desmond Slade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255610/publications.pdf Version: 2024-02-01

DESMOND SLADE

#	Article	IF	CITATIONS
1	Microbial Biotransformation of Cannabidiol (CBD) from Cannabis sativa. Planta Medica, 2021, , .	0.7	1
2	Bioactive products from singlet oxygen photooxygenation of cannabinoids. European Journal of Medicinal Chemistry, 2018, 143, 983-996.	2.6	7
3	Isolation and Pharmacological Evaluation of Minor Cannabinoids from High-Potency <i>Cannabis sativa</i> . Journal of Natural Products, 2015, 78, 1271-1276.	1.5	127
4	Minor oxygenated cannabinoids from high potency Cannabis sativa L Phytochemistry, 2015, 117, 194-199.	1.4	69
5	Synthesis and in vitro evaluation of ferutinol aryl esters for estrogenic activity and affinity toward cannabinoid receptors. Medicinal Chemistry Research, 2015, 24, 2670-2678.	1.1	4
6	Evaluation of phytocannabinoids from high-potency Cannabis sativa using in vitro bioassays to determine structure–activity relationships for cannabinoid receptor 1 and cannabinoid receptor 2. Medicinal Chemistry Research, 2014, 23, 4295-4300.	1.1	56
7	Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Letters, 2012, 53, 3560-3562.	0.7	34
8	Is cannabis becoming more potent?. , 2011, , 35-54.		4
9	Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L Pharmacology Biochemistry and Behavior, 2010, 95, 434-442.	1.3	205
10	Microbial metabolism of cannflavin A and B isolated from Cannabis sativa. Phytochemistry, 2010, 71, 1014-1019.	1.4	35
11	Potency Trends of Δ ⁹ â€THC and Other Cannabinoids in Confiscated Cannabis Preparations from 1993 to 2008*. Journal of Forensic Sciences, 2010, 55, 1209-1217.	0.9	414
12	An Update on the Synthesis and Antibacterial Effects of Carbapenems. Recent Patents on Anti-infective Drug Discovery, 2010, 5, 23-43.	0.5	7
13	Proanthocyanidins: Chemistry and Biology. , 2010, , 605-661.		9
14	Artemisinin dimer anticancer activity correlates with heme atalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. International Journal of Cancer, 2009, 125, 1266-1275.	2.3	89
15	Synthesis and evaluation of dihydroartemisinin and dihydroartemisitene acetal dimers showing anticancer and antiprotozoal activity. Bioorganic and Medicinal Chemistry, 2009, 17, 741-751.	1.4	64
16	Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorganic and Medicinal Chemistry, 2009, 17, 7949-7957.	1.4	55
17	Biologically Active Cannabinoids from High-Potency <i>Cannabis sativa</i> . Journal of Natural Products, 2009, 72, 906-911.	1.5	159
18	Naturally Occurring and Related Synthetic Cannabinoids and their Potential Therapeutic Applications. Recent Patents on CNS Drug Discovery, 2009, 4, 112-136.	0.9	35

DESMOND SLADE

#	Article	IF	CITATIONS
19	Structure determination and absolute configuration of cannabichromanone derivatives from high potency Cannabis sativa. Tetrahedron Letters, 2008, 49, 6050-6053.	0.7	46
20	Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry, 2008, 69, 2627-2633.	1.4	105
21	Cannabinoid Ester Constituents from High-Potency <i>Cannabis sativa</i> . Journal of Natural Products, 2008, 71, 536-542.	1.5	104
22	Isolation and Characterization of New Cannabis Constituents from a High Potency Variety. Planta Medica, 2008, 74, 267-272.	0.7	107
23	Pharmacological Characterization of Minor Cannabinoid Constituents. FASEB Journal, 2008, 22, 622-622.	0.2	7
24	3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae). South African Journal of Botany, 2006, 72, 517-520.	1.2	17
25	Circular Dichroism, a Powerful Tool for the Assessment of Absolute Configuration of Flavonoids ChemInform, 2006, 37, no.	0.1	0
26	Stereoselective Synthesis of Monomeric Flavonoids ChemInform, 2006, 37, no.	0.1	1
27	Heterogeneity of the Interflavanyl Bond in Proanthocyanidins from Natural Sources Lacking C-4 (C-Ring) Deoxy Flavonoid Nucleophiles ChemInform, 2006, 37, no.	0.1	Ο
28	Flavans and Proanthocyanidins. , 2005, , 553-616.		7
29	Bi-, Tri-, Tetra-, Penta-, and Hexaflavonoids. , 2005, , 1101-1128.		2
30	Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry, 2005, 66, 2177-2215.	1.4	475
31	Stereoselective synthesis of monomeric flavonoids. Phytochemistry, 2005, 66, 2145-2176.	1.4	57
32	Bioactive Constituents from TurkishPimpinella Species. Chemistry and Biodiversity, 2005, 2, 221-232.	1.0	52
33	Heterogeneity of the interflavanyl bond in proanthocyanidins from natural sources lacking C-4 (C-ring) deoxy flavonoid nucleophiles. Phytochemistry, 2005, 66, 2216-2237.	1.4	15
34	Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sciences, 2005, 78, 539-548.	2.0	826
35	Trimeric proteracacinidins and a (6→6)-bis-leucoteracacinidin from Acacia galpinii and Acacia caffra. Phytochemistry, 2004, 65, 215-220.	1.4	8
36	Circular Dichroic Properties of Elavan-3 4-diols⊥, Journal of Natural Products, 2004, 67, 174-178	15	30

#	Article	IF	CITATIONS
37	Phytochemistry of the mopane, Colophospermum mopane. Phytochemistry, 2003, 64, 31-51.	1.4	22
38	Oligomeric proanthocyanidins: naturally occurring O-heterocycles. Natural Product Reports, 2002, 19, 517-541.	5.2	191