Tapani Yli-Mattila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555860/publications.pdf

Version: 2024-02-01

361413 276875 1,782 46 20 41 citations h-index g-index papers 49 49 49 1939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A methanolic extract of Zanthoxylum bungeanum modulates secondary metabolism regulator genes in Aspergillus flavus and shuts down aflatoxin production. Scientific Reports, 2022, 12, 5995.	3.3	6
2	Biocontrol of Fusarium graminearum, a Causal Agent of Fusarium Head Blight of Wheat, and Deoxynivalenol Accumulation: From In Vitro to In Planta. Toxins, 2022, 14, 299.	3.4	12
3	Single-step noncompetitive immunocomplex immunoassay for rapid aflatoxin detection. Food Chemistry, 2022, 392, 133287.	8.2	10
4	Fumonisins in African Countries. Toxins, 2022, 14, 419.	3.4	7
5	Molecular Variation and Phylogeny within Fusarium avenaceum and Related Species. Diversity, 2022, 14, 574.	1.7	3
6	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic < i>Fusarium < /i>that Includes the < i>Fusarium solani < /i>Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
7	Emergence of Fusarium verticillioides in Finland. European Journal of Plant Pathology, 2020, 158, 1051-1057.	1.7	3
8	A Polyphasic Approach to Compare the Genomic Profiles of Aflatoxigenic and Non-Aflatoxigenic Isolates of Aspergillus Section Flavi. Toxins, 2020, 12, 56.	3.4	10
9	New genotypes of aflatoxigenic fungi from Egypt and the Philippines. Current Research in Environmental and Applied Mycology, 2020, 10, 142-155.	0.6	4
10	Geographic Distribution of Avirulence Genes of the Rice Blast Fungus Magnaporthe oryzae in the Philippines. Microorganisms, 2019, 7, 23.	3.6	9
11	Class B-Trichothecene Profiles of Fusarium Species as Causal Agents of Head Blight., 2019,, 347-376.		4
12	Morphological and Molecular Variation Between Fusarium avenaceum, Fusarium arthrosporioides and Fusarium anguioides Strains. Pathogens, 2018, 7, 94.	2.8	12
13	Thiophanate methyl susceptibility and alterations in tri5, Mgv1 and StuA expression among Fusarium graminearum and F. culmorum isolates. Journal of Plant Pathology, 2018, 100, 447-455.	1.2	5
14	Multiplex Detection of Fusarium Species. Methods in Molecular Biology, 2017, 1542, 269-291.	0.9	8
15	Multilocus genotyping based species identification of entomopathogenic fungi of the genus <i>Lecanicillium</i> (= <i>Verticillium lecanii</i> s.l.). Journal of Basic Microbiology, 2017, 57, 950-961.	3.3	6
16	A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 2016, 7, 406.	3.5	124
17	Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific Reports, 2016, 6, 21367.	3.3	89
18	Updated survey of <i>Fusarium</i> species and toxins in Finnish cereal grains. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 831-848.	2.3	82

#	Article	IF	CITATIONS
19	Molecular Diversity of Seed-borne Fusarium Species Associated with Maize in India. Current Genomics, 2016, 17, 132-144.	1.6	12
20	Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. Journal of the Science of Food and Agriculture, 2014, 94, 2674-2683.	3.5	86
21	Sources of resistance to Fusarium head blight in VIR oat collection. Euphytica, 2013, 191, 355-364.	1.2	21
22	Molecular Quantification and Genetic Diversity of Toxigenic Fusarium Species in Northern Europe as Compared to Those in Southern Europe. Microorganisms, 2013, 1, 162-174.	3.6	31
23	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
24	Polymorphism of Beauveria bassiana (Deuteromycota: Hyphomycetes) strains isolated from Ixodes ricinus (Acari: Ixodidae) in Moldova. Ticks and Tick-borne Diseases, 2011, 2, 50-54.	2.7	3
25	Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran. Saudi Journal of Biological Sciences, 2011, 18, 341-351.	3.8	32
26	Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. International Journal of Food Microbiology, 2011, 147, 58-68.	4.7	61
27	Prevalence, species composition, genetic variation and pathogenicity of clover rot (Sclerotinia) Tj ETQq1 1 0.7843 126, 13-27.	14 rgBT /(1.7	Overlock 10 24
28	Molecular Chemotyping of Fusarium graminearum, F. culmorum, and F. cerealis Isolates From Finland and Russia., 2010, , 159-177.		24
29	A novel Asian clade within the <i>Fusarium graminearum</i> species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia, 2009, 101, 841-852.	1.9	169
30	Real-time PCR for Quantification of Toxigenic Fusarium Species in Barley and Malt. European Journal of Plant Pathology, 2006, 114, 371-380.	1.7	75
31	Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and Fusarium sporotrichioides as inferred by IGS, ITS, β-tubulin sequences and UP-PCR hybridization analysis. International Journal of Food Microbiology, 2004, 95, 267-285.	4.7	7 5
32	IGSâ€"RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense. International Journal of Food Microbiology, 2004, 95, 321-331.	4.7	57
33	Molecular and Morphological Diversity of Fusarium Species in Finland and North-Western Russia. European Journal of Plant Pathology, 2004, 110, 573-585.	1.7	78
34	Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Hereditas, 2004, 140, 210-221.	1.4	34
35	Assessment of genetic variation in timothy (Phleum pratense L.) using RAPD and UP-PCR. Hereditas, 2003, 138, 101-113.	1.4	21
36	Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex –a polyphasic approach. Mycological Research, 2002, 106, 655-669.	2.5	79

3

#	Article	IF	CITATION
37	Species and strain identification of the predatory mite Euseius finlandicus by RAPD-PCR and ITS sequences. Experimental and Applied Acarology, 2000, 24, 863-880.	1.6	20
38	Title is missing!. European Journal of Plant Pathology, 2000, 106, 187-198.	1.7	41
39	Analysis of genetic diversity of Furcellaria lumbricalis (Gigartinales, Rhodophyta) in the Baltic Sea by RAPD-PCR technique. Phycologia, 2000, 39, 109-117.	1.4	10
40	Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. Mycological Research, 1999, 103, 328-332.	2.5	14
41	Universally primed polymerase chain reaction analysis of Fusarium avenaceum isolated from wheat and barley in Finland. Agricultural and Food Science, 1997, 6, 25-36.	0.9	22
42	Photoregulation of dikaryon-specific mRNAs and proteins by UV-A light inSchizophyllum commune. Current Microbiology, 1989, 18, 289-295.	2.2	17
43	The effect of UV-A light on cAMP level in the basidiomycete Schizophyllum commune. Physiologia Plantarum, 1987, 69, 451-455.	5.2	20
44	Action spectrum for fruiting in the basidiomycete Schizophyllum commune. Physiologia Plantarum, 1985, 65, 287-293.	5.2	13
45	Capacity for photoinduced fruiting in a dikaryon of Schizophyllum commune. Transactions of the British Mycological Society, 1985, 85, 145-151.	0.6	13
46	TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum. Trakya University Journal of Natural Sciences, 0, , .	0.4	0