Graeme A Henkelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113, 9901-9904.	3.0	15,067
2	A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36, 354-360.	3.0	7,727
3	Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113, 9978-9985.	3.0	7,115
4	A grid-based Bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter, 2009, 21, 084204.	1.8	4,245
5	Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 2007, 28, 899-908.	3.3	3,175
6	A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. Journal of Chemical Physics, 1999, 111, 7010-7022.	3.0	2,505
7	Optimization methods for finding minimum energy paths. Journal of Chemical Physics, 2008, 128, 134106.	3.0	1,360
8	A generalized solid-state nudged elastic band method. Journal of Chemical Physics, 2012, 136, 074103.	3.0	701
9	Removal of Interstitial H ₂ 0 in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. Journal of the American Chemical Society, 2015, 137, 2658-2664.	13.7	654
10	CO Oxidation Mechanism on CeO ₂ -Supported Au Nanoparticles. Journal of the American Chemical Society, 2012, 134, 1560-1570.	13.7	496
11	Comparison of methods for finding saddle points without knowledge of the final states. Journal of Chemical Physics, 2004, 121, 9776-9792.	3.0	462
12	Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. Journal of Chemical Physics, 2001, 115, 9657-9666.	3.0	398
13	Lithium Insertion in Nanostructured TiO ₂ (B) Architectures. Accounts of Chemical Research, 2013, 46, 1104-1112.	15.6	393
14	A Systematic Investigation of <i>p</i> -Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 7598-7604.	3.1	349
15	Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4, 792-804.	48.7	338
16	Calculations of Li-Ion Diffusion in Olivine Phosphates. Chemistry of Materials, 2011, 23, 4032-4037.	6.7	249
17	Honeycomb‣ike Spherical Cathode Host Constructed from Hollow Metallic and Polar Co ₉ S ₈ Tubules for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704443.	14.9	236
18	Sulfur Loading and Speciation Control the Hydrophobicity, Electron Transfer, Reactivity, and Selectivity of Sulfidized Nanoscale Zerovalent Iron, Advanced Materials, 2020, 32, e1906910	21.0	204

#	Article	IF	CITATIONS
19	Na ₃ MnZr(PO ₄) ₃ : A High-Voltage Cathode for Sodium Batteries. Journal of the American Chemical Society, 2018, 140, 18192-18199.	13.7	195
20	Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. Journal of Chemical Physics, 2018, 149, 174705.	3.0	193
21	Simple Synthesis of Nanocrystalline Tin Sulfide/N-Doped Reduced Graphene Oxide Composites as Lithium Ion Battery Anodes. ACS Nano, 2016, 10, 10778-10788.	14.6	178
22	Water-Enhanced Low-Temperature CO Oxidation and Isotope Effects on Atomic Oxygen-Covered Au(111). Journal of the American Chemical Society, 2008, 130, 6801-6812.	13.7	171
23	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
24	Paths to which the nudged elastic band converges. Journal of Computational Chemistry, 2011, 32, 1769-1771.	3.3	162
25	Design of a Pd–Au Nitrite Reduction Catalyst by Identifying and Optimizing Active Ensembles. ACS Catalysis, 2019, 9, 7957-7966.	11.2	160
26	Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion. Advanced Functional Materials, 2020, 30, 1905665.	14.9	159
27	Theoretical calculations of CH4 and H2 associative desorption from Ni(111): Could subsurface hydrogen play an important role?. Journal of Chemical Physics, 2006, 124, 044706.	3.0	156
28	Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nature Materials, 2016, 15, 1267-1273.	27.5	155
29	Hybrid density functional theory band structure engineering in hematite. Journal of Chemical Physics, 2011, 134, 224706.	3.0	152
30	Enhanced Activity Promoted by CeO _{<i>x</i>} on a CoO _{<i>x</i>} Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 4257-4265.	11.2	151
31	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234.	14.6	151
32	CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO ₂ (111) Surface by the Mars–van Krevelen Mechanism. Journal of Physical Chemistry Letters, 2013, 4, 216-221.	4.6	148
33	Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Journal of Chemical Physics, 2009, 130, 194504.	3.0	141
34	Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction. ACS Nano, 2013, 7, 9168-9172.	14.6	141
35	Theoretical Calculations of Dissociative Adsorption ofCH4on an Ir(111) Surface. Physical Review Letters, 2001, 86, 664-667.	7.8	136
36	lonic and Electronic Conduction in TiNb ₂ O ₇ . Journal of the American Chemical Society, 2019, 141, 16706-16725.	13.7	134

#	Article	IF	CITATIONS
37	Methods for Finding Saddle Points and Minimum Energy Paths. , 2002, , 269-302.		133
38	Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction. Journal of Physical Chemistry Letters, 2011, 2, 1328-1331.	4.6	131
39	Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology, 2020, 54, 13294-13303.	10.0	128
40	Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. Journal of Chemical Physics, 2008, 129, 114104.	3.0	125
41	Intrinsic Diffusion of Hydrogen on Rutile TiO ₂ (110). Journal of the American Chemical Society, 2008, 130, 9080-9088.	13.7	124
42	Oxygen Reduction Reaction on Classically Immiscible Bimetallics: A Case Study of RhAu. Journal of Physical Chemistry C, 2018, 122, 2712-2716.	3.1	123
43	Microwave Synthesis of Classically Immiscible Rhodium–Silver and Rhodium–Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts. ACS Nano, 2014, 8, 11512-11521.	14.6	118
44	Solid-state dimer method for calculating solid-solid phase transitions. Journal of Chemical Physics, 2014, 140, 174104.	3.0	112
45	Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. Journal Physics D: Applied Physics, 2014, 47, 255301.	2.8	109
46	Potential Energy Surface of Methanol Decomposition on Cu(110). Journal of Physical Chemistry C, 2009, 113, 4522-4537.	3.1	105
47	Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes. Journal of Physical Chemistry C, 2012, 116, 23201-23204.	3.1	104
48	Efficient Electrocatalytic Oxidation of Formic Acid Using Au@Pt Dendrimer-Encapsulated Nanoparticles. Journal of the American Chemical Society, 2013, 135, 5521-5524.	13.7	103
49	CO Oxidation at the Interface between Doped CeO ₂ and Supported Au Nanoclusters. Journal of Physical Chemistry Letters, 2012, 3, 2194-2199.	4.6	102
50	Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nature Communications, 2020, 11, 5242.	12.8	102
51	CO Oxidation at the Au/TiO ₂ Boundary: The Role of the Au/Ti _{5c} Site. ACS Catalysis, 2015, 5, 1589-1595.	11.2	99
52	Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. Environmental Science & Technology, 2021, 55, 2628-2638.	10.0	98
53	A highly efficient double-hierarchical sulfur host for advanced lithium–sulfur batteries. Chemical Science, 2018, 9, 666-675.	7.4	97
54	Structure and Mobility of Defects Formed from Collision Cascades in MgO. Physical Review Letters, 2004, 92, 115505.	7.8	96

#	Article	IF	CITATIONS
55	Tunability of the Adsorbate Binding on Bimetallic Alloy Nanoparticles for the Optimization of Catalytic Hydrogenation. Journal of the American Chemical Society, 2017, 139, 5538-5546.	13.7	96
56	Dehydrogenation Selectivity of Ethanol on Close-Packed Transition Metal Surfaces: A Computational Study of Monometallic, Pd/Au, and Rh/Au Catalysts. Journal of Physical Chemistry C, 2017, 121, 27504-27510.	3.1	96
57	Theoretical Study of the Structural Evolution of a Na ₂ FeMn(CN) ₆ Cathode upon Na Intercalation. Chemistry of Materials, 2015, 27, 3763-3768.	6.7	94
58	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	19.5	94
59	Theoretical Resolution of the Exceptional Oxygen Reduction Activity of Au(100) in Alkaline Media. ACS Catalysis, 2019, 9, 5567-5573.	11.2	93
60	Atomically Embedded Ag via Electrodiffusion Boosts Oxygen Evolution of CoOOH Nanosheet Arrays. ACS Catalysis, 2020, 10, 562-569.	11.2	93
61	Optimizing transition states via kernel-based machine learning. Journal of Chemical Physics, 2012, 136, 174101.	3.0	92
62	Theoretical and Experimental Study of Vanadium-Based Fluorophosphate Cathodes for Rechargeable Batteries. Chemistry of Materials, 2014, 26, 3089-3097.	6.7	90
63	Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chemical Society Reviews, 2013, 42, 5002.	38.1	89
64	PdAu Alloy Nanoparticle Catalysts: Effective Candidates for Nitrite Reduction in Water. ACS Catalysis, 2017, 7, 3268-3276.	11.2	89
65	Small Pd Clusters, up to the Tetramer At Least, Are Highly Mobile on the MgO(100) Surface. Physical Review Letters, 2005, 95, 146103.	7.8	87
66	Morphological Dependence of Lithium Insertion in Nanocrystalline TiO ₂ (B) Nanoparticles and Nanosheets. Journal of Physical Chemistry Letters, 2012, 3, 2015-2019.	4.6	87
67	Multiple Time Scale Simulations of Metal Crystal Growth Reveal the Importance of Multiatom Surface Processes. Physical Review Letters, 2003, 90, 116101.	7.8	86
68	Understanding the Nucleation and Growth of Metals on TiO ₂ : Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 2013, 117, 7191-7201.	3.1	84
69	Detection of CO ₂ ^{•–} in the Electrochemical Reduction of Carbon Dioxide in <i>N</i> , <i>N</i> .Journal of the American Chemical Society, 2017, 139, 18552-18557.	13.7	84
70	CO Adsorption-Driven Surface Segregation of Pd on Au/Pd Bimetallic Surfaces: Role of Defects and Effect on CO Oxidation. ACS Catalysis, 2013, 3, 2541-2546.	11.2	83
71	CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO ₂ (111). Journal of Physical Chemistry Letters, 2013, 4, 2943-2947.	4.6	80
72	Selectivity for ethanol partial oxidation: the unique chemistry of single-atom alloy catalysts on Au, Ag, and Cu(111). Journal of Materials Chemistry A, 2019, 7, 23868-23877.	10.3	80

#	Article	IF	CITATIONS
73	Dynamical simulations of radiation damage and defect mobility in MgO. Physical Review B, 2005, 71, .	3.2	79
74	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	14.6	79
75	A Theoretical and Experimental Approach for Correlating Nanoparticle Structure and Electrocatalytic Activity. Accounts of Chemical Research, 2015, 48, 1351-1357.	15.6	78
76	Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries. Advanced Energy Materials, 2016, 6, 1501933.	19.5	77
77	Ethanol Decomposition on Pd–Au Alloy Catalysts. Journal of Physical Chemistry C, 2018, 122, 22024-22032.	3.1	77
78	An Experimental and Theoretical Investigation of the Inversion of Pd@Pt Core@Shell Dendrimer-Encapsulated Nanoparticles. ACS Nano, 2013, 7, 9345-9353.	14.6	75
79	Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chemical Reviews, 2020, 120, 814-850.	47.7	75
80	Characterization and Theory of Electrocatalysts Based on Scanning Electrochemical Microscopy Screening Methods. Langmuir, 2006, 22, 10426-10431.	3.5	74
81	Identification of Active Sites of Pure and Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Using Constant-Potential Calculations. Journal of Physical Chemistry C, 2020, 124, 12016-12023.	3.1	73
82	Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy, 2018, 53, 354-361.	16.0	72
83	Periodicity and Atomic Ordering in Nanosized Particles of Crystals. Journal of Physical Chemistry C, 2008, 112, 8907-8911.	3.1	70
84	First principles study of photo-oxidation degradation mechanisms in P3HT for organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 8092-8099.	2.8	70
85	<i>In situ</i> Raman spectroscopy of LiFePO ₄ : size and morphology dependence during charge and self-discharge. Nanotechnology, 2013, 24, 424009.	2.6	69
86	Surface Charge and Electrostatic Spin Crossover Effects in CoN ₄ Electrocatalysts. ACS Catalysis, 2020, 10, 12148-12155.	11.2	69
87	Cu <i>_x</i> Ir _{1–<i>x</i>} Nanoalloy Catalysts Achieve Near 100% Selectivity for Aqueous Nitrite Reduction to NH ₃ . ACS Catalysis, 2020, 10, 7915-7921.	11.2	69
88	Formation of HONO from the NH ₃ -promoted hydrolysis of NO ₂ dimers in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7236-7241.	7.1	67
89	Pd diffusion on MgO(100): The role of defects and small cluster mobility. Surface Science, 2006, 600, 1351-1362.	1.9	66
90	Optimizing core-shell nanoparticle catalysts with a genetic algorithm. Journal of Chemical Physics, 2009, 131, 234103.	3.0	66

#	Article	IF	CITATIONS
91	MgO addimer diffusion on MgO(100): A comparison ofab initioand empirical models. Physical Review B, 2005, 72, .	3.2	64
92	Calculations of CO Oxidation over a Au/TiO ₂ Catalyst: A Study of Active Sites, Catalyst Deactivation, and Moisture Effects. ACS Catalysis, 2018, 8, 1376-1383.	11.2	64
93	PdAg Alloy Nanocatalysts: Toward Economically Viable Nitrite Reduction in Drinking Water. ACS Catalysis, 2020, 10, 7979-7989.	11.2	64
94	A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chemical Science, 2013, 4, 2912.	7.4	63
95	Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO ₄ . Chemistry of Materials, 2012, 24, 3212-3218.	6.7	62
96	Unification of algorithms for minimum mode optimization. Journal of Chemical Physics, 2014, 140, 044115.	3.0	62
97	CO Oxidation on the Pd(111) Surface. ACS Catalysis, 2014, 4, 3435-3443.	11.2	62
98	Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal, 2020, 400, 125900.	12.7	61
99	Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level. Journal of Physical Chemistry Letters, 2016, 7, 2702-2707.	4.6	60
100	Adaptive kinetic Monte Carlo simulation of methanol decomposition on Cu(100). Journal of Chemical Physics, 2009, 131, 244520.	3.0	59
101	Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation. Journal of Catalysis, 2011, 282, 278-288.	6.2	58
102	Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores. Journal of Physical Chemistry C, 2012, 116, 20860-20865.	3.1	58
103	Sodium Intercalation Behavior of Layered Na _{<i>x</i>} NbS ₂ (0 ≤i>x ≤). Chemistry of Materials, 2013, 25, 1699-1705.	6.7	58
104	EON: software for long time simulations of atomic scale systems. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055002.	2.0	58
105	Understanding the phase transitions in spinel-layered-rock salt system: Criterion for the rational design of LLO/spinel nanocomposites. Nano Energy, 2017, 40, 566-575.	16.0	58
106	Rational Design of Coating Ions via Advantageous Surface Reconstruction in Highâ€Nickel Layered Oxide Cathodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101112.	19.5	58
107	Alchemical derivatives of reaction energetics. Journal of Chemical Physics, 2010, 133, 084104.	3.0	57
108	Oxygen Activation and Reaction on Pd–Au Bimetallic Surfaces. Journal of Physical Chemistry C, 2015, 119, 11754-11762.	3.1	57

7

#	Article	IF	CITATIONS
109	Mechanistic insights on ethanol dehydrogenation on Pd–Au model catalysts: a combined experimental and DFT study. Physical Chemistry Chemical Physics, 2017, 19, 30578-30589.	2.8	57
110	Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 11386-11397.	11.2	57
111	Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrO _{<i>x</i>} Nanoparticle Catalysts for Stable Oxygen Evolution. Chemistry of Materials, 2018, 30, 5941-5950.	6.7	57
112	Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chemical Science, 2012, 3, 1033.	7.4	56
113	Oxygen activity and peroxide formation as charge compensation mechanisms in Li ₂ MnO ₃ . Journal of Materials Chemistry A, 2017, 5, 15183-15190.	10.3	55
114	Microwave-Assisted Synthesis of Pd _{<i>x</i>} Au _{100–<i>x</i>} Alloy Nanoparticles: A Combined Experimental and Theoretical Assessment of Synthetic and Compositional Effects upon Catalytic Reactivity. ACS Catalysis, 2016, 6, 4882-4893.	11.2	54
115	Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nature Communications, 2020, 11, 3411.	12.8	54
116	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 12553-12557.	13.8	53
117	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
118	A Metal–Organic Framework with Cooperative Phosphines That Permit Postâ€ S ynthetic Installation of Open Metal Sites. Angewandte Chemie - International Edition, 2018, 57, 9295-9299.	13.8	52
119	Dimer saddle point searches to determine the reactivity of formate on Cu(111). Journal of Catalysis, 2008, 258, 44-51.	6.2	51
120	Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution. Journal of Applied Physics, 2015, 117, .	2.5	51
121	Thiocyanate-Modified Silver Nanofoam for Efficient CO ₂ Reduction to CO. ACS Catalysis, 2020, 10, 1444-1453.	11.2	51
122	Robust Lithium–Sulfur Batteries Enabled by Highly Conductive WSe ₂ â€Based Superlattices with Tunable Interlayer Space. Advanced Functional Materials, 2022, 32, .	14.9	51
123	Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 11102-11114.	14.6	50
124	Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodineâ€Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
125	Kinetic Monte Carlo Study of Li Intercalation in LiFePO ₄ . ACS Nano, 2018, 12, 844-851.	14.6	47
126	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	19.5	47

#	Article	IF	CITATIONS
127	Calcium Adsorption on MgO(100):  Energetics, Structure, and Role of Defects. Journal of the American Chemical Society, 2008, 130, 2314-2322.	13.7	45
128	Site-Selective Cu Deposition on Pt Dendrimer-Encapsulated Nanoparticles: Correlation of Theory and Experiment. Journal of the American Chemical Society, 2012, 134, 4153-4162.	13.7	44
129	Benchmarks for Characterization of Minima, Transition States, and Pathways in Atomic, Molecular, and Condensed Matter Systems. Journal of Chemical Theory and Computation, 2014, 10, 5476-5482.	5.3	43
130	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43
131	Low-Valent Metal Ions as MOF Pillars: A New Route Toward Stable and Multifunctional MOFs. Journal of the American Chemical Society, 2021, 143, 13710-13720.	13.7	43
132	Computational Design of a CeO ₂ -Supported Pd-Based Bimetallic Nanorod for CO Oxidation. Journal of Physical Chemistry C, 2016, 120, 5557-5564.	3.1	42
133	Electrocatalytic Study of the Oxygen Reduction Reaction at Gold Nanoparticles in the Absence and Presence of Interactions with SnO _{<i>x</i>>Supports. Journal of the American Chemical Society, 2018, 140, 13775-13785.}	13.7	42
134	Kinetic and Thermodynamic Evaluation of the Reversible N-Heterocyclic Carbeneâ^`Isothiocyanate Coupling Reaction: Applications in Latent Catalysis. Journal of Organic Chemistry, 2011, 76, 301-304.	3.2	41
135	2D covalent organic frameworks for photosynthesis of α-trifluoromethylated ketones from aromatic alkenes. Applied Catalysis B: Environmental, 2022, 310, 121335.	20.2	41
136	Probing the Limits of Conventional Extended X-ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles. ACS Nano, 2015, 9, 4036-4042.	14.6	40
137	A Sodium–Antimony–Telluride Intermetallic Allows Sodiumâ€Metal Cycling at 100% Depth of Discharge and as an Anodeâ€Free Metal Battery. Advanced Materials, 2022, 34, e2106005.	21.0	40
138	Carbonate Formation and Decomposition on Atomic Oxygen Precovered Au(111). Journal of the American Chemical Society, 2008, 130, 11250-11251.	13.7	39
139	Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2 electrodes. Journal of Chemical Physics, 2012, 137, 164705.	2) 3.0	39
140	In Situ Raman Study of Phase Stability of α-Li ₃ V ₂ (PO ₄) ₃ upon Thermal and Laser Heating. Journal of Physical Chemistry C, 2013, 117, 11994-12002.	3.1	39
141	Computational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts. ACS Catalysis, 2015, 5, 655-660.	11.2	39
142	Efficient CO Oxidation Using Dendrimer-Encapsulated Pt Nanoparticles Activated with <2% Cu Surface Atoms. ACS Nano, 2016, 10, 8760-8769.	14.6	39
143	Atomistic Simulations of Activated Processes in Materials. Annual Review of Materials Research, 2017, 47, 199-216.	9.3	38
144	Kinetic Monte Carlo simulations of Pd deposition and island growth on MgO(100). Surface Science, 2007, 601, 3133-3142.	1.9	37

#	Article	IF	CITATIONS
145	Ligand-Induced Structural Evolution of Pt ₅₅ Nanoparticles: Amine <i>versus</i> Thiol. ACS Nano, 2011, 5, 8515-8522.	14.6	37
146	Molecular dynamics saddle search adaptive kinetic Monte Carlo. Journal of Chemical Physics, 2014, 140, 214110.	3.0	37
147	Elucidation of Aqueous Solvent-Mediated Hydrogen-Transfer Reactions by ab Initio Molecular Dynamics and Nudged Elastic-Band Studies of NaBH ₄ Hydrolysis. Journal of Physical Chemistry C, 2014, 118, 21385-21399.	3.1	37
148	Oxygen and Hydroxyl Species Induce Multiple Reaction Pathways for the Partial Oxidation of Allyl Alcohol on Gold. Journal of the American Chemical Society, 2014, 136, 6489-6498.	13.7	37
149	Why Silver Nanoparticles Are Effective for Olefin/Paraffin Separations. Journal of Physical Chemistry C, 2011, 115, 1811-1818.	3.1	35
150	Design of a Highly Nanodispersed Pd–MgO/SiO ₂ Composite Catalyst with Multifunctional Activity for CH ₄ Reforming. ChemSusChem, 2012, 5, 1474-1481.	6.8	35
151	Correlating Structure and Function of Metal Nanoparticles for Catalysis. Surface Science, 2015, 640, 65-72.	1.9	35
152	Self-Assembled Cu–Sn–S Nanotubes with High (De)Lithiation Performance. ACS Nano, 2017, 11, 10347-10356.	14.6	35
153	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	10.0	35
154	Structure Revealing H/D Exchange with Co-Adsorbed Hydrogen and Water on Gold. Journal of Physical Chemistry Letters, 2012, 3, 1894-1899.	4.6	34
155	Communication: From graphite to diamond: Reaction pathways of the phase transition. Journal of Chemical Physics, 2012, 137, 101101.	3.0	33
156	Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method. Journal of the American Chemical Society, 2018, 140, 6249-6259.	13.7	33
157	Intermetallic Pd ₃ Pb nanocubes with high selectivity for the 4-electron oxygen reduction reaction pathway. Nanoscale, 2020, 12, 2532-2541.	5.6	33
158	Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogenâ€Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodiumâ€Metal–Sulfur Batteries. Advanced Materials, 2022, 34, e2106572.	21.0	33
159	Pyrene: Hydrogenation, hydrogen evolution, and π-band model. Journal of Chemical Physics, 2011, 134, 164703.	3.0	32
160	New Mechanism for Ferroelectricity in the Perovskite Ca _{2–<i>x</i>} Mn _{<i>x</i>} Ti ₂ O ₆ Synthesized by Spark Plasma Sintering. Journal of the American Chemical Society, 2018, 140, 2214-2220.	13.7	32
161	Cobalt Metal–Cobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 3909-3918.	5.1	32
162	Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects. Nano Energy, 2020, 71, 104644.	16.0	31

#	Article	IF	CITATIONS
163	Electrochemical Properties of Three Li ₂ Ni ₂ TeO ₆ Structural Polymorphs. Chemistry of Materials, 2019, 31, 9379-9388.	6.7	29
164	Synthesis and Dual-Mode Electrochromism of Anisotropic Monoclinic Nb ₁₂ O ₂₉ Colloidal Nanoplatelets. ACS Nano, 2020, 14, 10068-10082.	14.6	29
165	Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts. Applied Catalysis B: Environmental, 2022, 305, 121048.	20.2	29
166	Solvation and Reaction of Ammonia in Molecularly Thin Water Films. Journal of Physical Chemistry C, 2015, 119, 23052-23058.	3.1	28
167	Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts. Nanoscale, 2017, 9, 5244-5253.	5.6	28
168	Oxidative Cross-Esterification and Related Pathways of Co-Adsorbed Oxygen and Ethanol on Pd–Au. ACS Catalysis, 2019, 9, 4516-4525.	11.2	28
169	Electrochemical behavior of a Ni ₃ N OER precatalyst in Fe-purified alkaline media: the impact of self-oxidation and Fe incorporation. Materials Advances, 2021, 2, 2299-2309.	5.4	28
170	Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. Annual Review of Analytical Chemistry, 2019, 12, 501-522.	5.4	27
171	A combined theoretical and experimental EXAFS study of the structure and dynamics of Au ₁₄₇ nanoparticles. Catalysis Science and Technology, 2016, 6, 6879-6885.	4.1	26
172	Cu ₄ SnS ₄ -Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction. ACS Nano, 2019, 13, 10671-10681.	14.6	26
173	Selective Oxidation of Acetaldehyde to Acetic Acid on Pd–Au Bimetallic Model Catalysts. ACS Catalysis, 2019, 9, 4360-4368.	11.2	26
174	Calculations of oxide formation on low-index Cu surfaces. Journal of Chemical Physics, 2016, 145, 044711.	3.0	25
175	Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles. Nanoscale, 2019, 11, 10524-10535.	5.6	25
176	Finding possible transition states of defects in silicon-carbide and alpha-iron using the dimer method. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 1-7.	1.4	24
177	Conformational dependence of a protein kinase phosphate transfer reaction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15347-15351.	7.1	24
	Phase stability and elastic properties of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mi>X </mml:mi> <mml:msub> <mml:mrow> <mml:mtext> MgB </mml:mtext> <</mml:mrow></mml:msub></mml:mrow></mml:math>	/mml:mro	w> <mml:mro< td=""></mml:mro<>

178 by <i>áb initio </i> calculations <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML

#	Article	IF	CITATIONS
181	Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2194-2201.	10.3	23
182	Effect of annealing in oxygen on alloy structures of Pd–Au bimetallic model catalysts. Physical Chemistry Chemical Physics, 2015, 17, 20588-20596.	2.8	23
183	Controlling the Shape Anisotropy of Monoclinic Nb ₁₂ O ₂₉ Nanocrystals Enables Tunable Electrochromic Spectral Range. Journal of the American Chemical Society, 2021, 143, 15745-15755.	13.7	23
184	Defect Sites and Their Distributions on MgO(100) by Li and Ca Adsorption Calorimetry. Journal of the American Chemical Society, 2009, 131, 3098-3103.	13.7	22
185	Control of selectivity in allylic alcohol oxidation on gold surfaces: the role of oxygen adatoms and hydroxyl species. Physical Chemistry Chemical Physics, 2015, 17, 4730-4738.	2.8	22
186	Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. Journal of Chemical Physics, 2016, 145, 244708.	3.0	22
187	Analytic dynamical corrections to transition state theory. New Journal of Physics, 2016, 18, 013023.	2.9	22
188	Transformation of topologically close-packed \hat{l}^2 -W to body-centered cubic $\hat{l}\pm$ -W: Comparison of experiments and computations. Journal of Chemical Physics, 2017, 147, 152709.	3.0	22
189	Structural transformations in Li ₂ MnSiO ₄ : evidence that a Li intercalation material can reversibly cycle through a disordered phase. Journal of Materials Chemistry A, 2017, 5, 16722-16731.	10.3	22
190	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 12683-12687.	2.0	22
191	Theoretical Studies of Self-Diffusion and Dopant Clustering in Semiconductors. Physica Status Solidi (B): Basic Research, 2002, 233, 24-30.	1.5	21
192	Calculations of Ca adsorption on a MgO(100) surface: Determination of the binding sites and growth mode. Physical Review B, 2008, 77, .	3.2	21
193	Role of Geometric Relaxation in Oxygen Binding to Metal Nanoparticles. Journal of Physical Chemistry Letters, 2011, 2, 1237-1240.	4.6	21
194	Atomically miniaturized bi-phase IrO _{<i>x</i>} /Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li–CO ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 19710-19721.	10.3	21
195	Exploring long-time response to radiation damage in MgO. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 260-273.	1.4	20
196	Long time scale simulation of a grain boundary in copper. New Journal of Physics, 2009, 11, 073034.	2.9	20
197	Computational Study of Structure and Reactivity of Oligomeric Vanadia Clusters Supported on Anatase and Rutile TiO ₂ Surfaces. Journal of Physical Chemistry C, 2015, 119, 15160-15167.	3.1	20
198	Can Exciton-Delocalizing Ligands Facilitate Hot Hole Transfer from Semiconductor Nanocrystals?. Journal of Physical Chemistry C, 2016, 120, 28224-28234.	3.1	20

#	Article	IF	CITATIONS
199	The effect of single pd atoms on the energetics of recombinative O2 desorption from Au(111). Surface Science, 2018, 677, 296-300.	1.9	20
200	Black Tungsten Oxide Nanofiber as a Robust Support for Metal Catalysts: High Catalyst Loading for Electrochemical Oxygen Reduction. Small, 2021, 17, e2103755.	10.0	20
201	Rapid Synthesis of Rhodium–Palladium Alloy Nanocatalysts. ChemCatChem, 2018, 10, 329-333.	3.7	19
202	Li–Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9985-9993.	8.0	19
203	Atomic-Scale Mechanisms of Electrochemical Pt Dissolution. ACS Catalysis, 2021, 11, 14439-14447.	11.2	19
204	A combined density functional and x-ray diffraction study of Pt nanoparticle structure. Journal of Chemical Physics, 2011, 135, 014503.	3.0	18
205	Unusual Activity Trend for CO Oxidation on Pd _{<i>x</i>} Au _{140–<i>x</i>} @Pt Core@Shell Nanoparticle Electrocatalysts. Journal of Physical Chemistry Letters, 2015, 6, 2562-2568.	4.6	18
206	Calculations of the pH-Dependent Onset Potential for CO Electrooxidation on Au(111). Langmuir, 2018, 34, 15268-15275.	3.5	18
207	Reversible Solid-State Isomerism of Azobenzene-Loaded Large-Pore Isoreticular Mg-CUK-1. Journal of the American Chemical Society, 2020, 142, 6467-6471.	13.7	18
208	Behavior of Li Guest in KNb ₅ O ₁₃ Host with One-Dimensional Tunnels and Multiple Interstitial Sites. Chemistry of Materials, 2011, 23, 3210-3216.	6.7	17
209	Understanding and Controlling the 1,4-Phenylene Diisocyanide–Gold Oligomer Formation Pathways. Journal of Physical Chemistry C, 2014, 118, 20899-20907.	3.1	17
210	Improved Charge Carrier Transport of Hydrogen-Treated Copper Tungstate: Photoelectrochemical and Computational Study. Journal of the Electrochemical Society, 2016, 163, H970-H975.	2.9	17
211	Collective Atomic Displacements during Complex Phase Boundary Migration in Solid-Solid Phase Transformations. Physical Review Letters, 2016, 116, 035701.	7.8	17
212	A computational study of supported Cu-based bimetallic nanoclusters for CO oxidation. Physical Chemistry Chemical Physics, 2018, 20, 7508-7513.	2.8	17
213	Outstanding Oxygen Reduction Reaction Catalytic Performance of In–PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 2021, 33, 8895-8903.	6.7	17
214	Calcium Poly(Heptazine Imide): A Covalent Heptazine Framework for Selective CO ₂ Adsorption. ACS Nano, 2022, 16, 5393-5403.	14.6	17
215	Mechanism of the CalrO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub></mml:math> post-perovskite phase transition under pressure. Physical Review B. 2013, 88.	3.2	16
216	Stabilizer-Free Culr Alloy Nanoparticle Catalysts. Chemistry of Materials, 2019, 31, 10225-10235.	6.7	16

#	Article	IF	CITATIONS
217	Biased gradient squared descent saddle point finding method. Journal of Chemical Physics, 2014, 140, 194102.	3.0	15
218	Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. Nanoscale, 2018, 10, 22520-22532.	5.6	15
219	Pitfalls of choosing an order parameter for rare event calculations. Journal of Chemical Physics, 2009, 131, 074108.	3.0	14
220	Calculations of Li adsorption and diffusion on MgO(100) in comparison to Ca. Physical Review B, 2010, 82, .	3.2	14
221	Communication: κ-dynamics—An exact method for accelerating rare event classical molecular dynamics. Journal of Chemical Physics, 2010, 133, 201101.	3.0	14
222	Database of atomistic reaction mechanisms with application to kinetic Monte Carlo. Journal of Chemical Physics, 2012, 137, 014105.	3.0	14
223	Computational design of CO-tolerant Pt ₃ M anode electrocatalysts for proton-exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2019, 21, 4046-4052.	2.8	14
224	Structural and Electrochemical Consequences of Sodium in the Transition-Metal Layer of O′3-Na ₃ Ni _{1.5} TeO ₆ . Chemistry of Materials, 2020, 32, 10035-10044.	6.7	14
225	Effect of TiO _{<i>x</i>} Substrate Interactions on the Electrocatalytic Oxygen Reduction Reaction at Au Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 10045-10056.	3.1	14
226	O ₂ activation at the Au/MgO(001) interface boundary facilitates CO oxidation. Physical Chemistry Chemical Physics, 2016, 18, 5486-5490.	2.8	13
227	Superior Oxygen Electrocatalysis on RuSe x Nanoparticles for Rechargeable Air Cathodes. Advanced Energy Materials, 2018, 8, 1702037.	19.5	13
228	A Metal–Organic Framework with Cooperative Phosphines That Permit Post‧ynthetic Installation of Open Metal Sites. Angewandte Chemie, 2018, 130, 9439-9443.	2.0	13
229	Amethyrin-type expanded porphyrins that display anti-aromatic character upon protonation. Chemical Communications, 2020, 56, 9994-9997.	4.1	13
230	The role of antisite defect pairs in surface reconstruction of layered AMO2 oxides: A DFT+U study. Applied Surface Science, 2021, 537, 147750.	6.1	13
231	Calculations of Oxygen Adsorption-Induced Surface Reconstruction and Oxide Formation on Cu(100). Chemistry of Materials, 2017, 29, 1472-1484.	6.7	12
232	Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 20057-20074.	2.8	12
233	Alkali Atoms Diffusion Mechanism in CulnSe ₂ Explained by Kinetic Monte Carlo Simulations. Advanced Theory and Simulations, 2019, 2, 1900036.	2.8	12
234	Calculations of Hydrogen Associative Desorption on Mono- and Bimetallic Catalysts. Journal of Physical Chemistry C, 2021, 125, 12028-12037.	3.1	12

#	Article	IF	CITATIONS
235	Lowâ€Temperature Chemoselective Goldâ€5urfaceâ€Mediated Hydrogenation of Acetone and Propionaldehyde. ChemCatChem, 2012, 4, 1241-1244.	3.7	11
236	Correlating Surface Structures and Electrochemical Activity Using Shape-Controlled Single-Pt Nanoparticles. ACS Nano, 2021, 15, 17926-17937.	14.6	11
237	Basin constrained Î ² -dimer method for saddle point finding. Journal of Chemical Physics, 2014, 141, 164111.	3.0	10
238	Electrochemical Activity of Dendrimer-Stabilized Tin Nanoparticles for Lithium Alloying Reactions. Langmuir, 2015, 31, 6570-6576.	3.5	10
239	Computationally Assisted STEM and EXAFS Characterization of Tunable Rh/Au and Rh/Ag Bimetallic Nanoparticle Catalysts. Microscopy and Microanalysis, 2017, 23, 2030-2031.	0.4	10
240	Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation. Catalysis Science and Technology, 2020, 10, 7344-7351.	4.1	10
241	Oxidation of Sn at the Cluster–Support Interface: Sn and Pt–Sn Clusters on TiO ₂ (110). Journal of Physical Chemistry C, 2021, 125, 17671-17683.	3.1	10
242	Iterative redox activation promotes interfacial synergy in an Ag/CuxO catalyst for oxygen reduction. Chemical Engineering Journal, 2022, 446, 136966.	12.7	10
243	Localized Mg-vacancy states in the thermoelectric material Mg2â^' <i>δ</i> Si0.4Sn0.6. Journal of Applied Physics, 2016, 119, .	2.5	9
244	Anomalous bulk modulus in vanadate spinels. Physical Review B, 2016, 94, .	3.2	9
245	Au _{<i>x</i>} Pd _(300â€<i>x</i>) Alloy Nanoparticles for the Oxygen Reduction Reaction in Alkaline Media. ChemElectroChem, 2020, 7, 3824-3831.	3.4	9
246	Testing the predictive power of theory for Pd _x Ir _(100â^`x) alloy nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 8421-8429.	10.3	9
247	Phase stability of AlYB ₁₄ sputtered thin films. Journal of Physics Condensed Matter, 2009, 21, 355006.	1.8	8
248	Ethylene binding to Au/Cu alloy nanoparticles. Surface Science, 2016, 653, 66-70.	1.9	8
249	Communication: Calculations of the (2 × 1)-O reconstruction kinetics on Cu(110). Journal of Chemical Physics, 2017, 146, 111101.	3.0	8
250	Chloride Flux Growth of Idiomorphic <i>A</i> WO ₄ (<i>A</i> = Sr, Ba) Single Microcrystals. Crystal Growth and Design, 2018, 18, 5301-5310.	3.0	8
251	Pair-distribution-function guided optimization of fingerprints for atom-centered neural network potentials. Journal of Chemical Physics, 2020, 152, 224102.	3.0	8
252	Template-assisted synthesis of single-atom catalysts supported on highly crystalline vanadium pentoxide for stable oxygen evolution. Chem Catalysis, 2022, 2, 1191-1210.	6.1	8

#	Article	IF	CITATIONS
253	First-principles studies of small arsenic interstitial complexes in crystalline silicon. Physical Review B, 2009, 79, .	3.2	7
254	A model to optimize the selectivity of gas separation in membranes. Journal of Membrane Science, 2010, 364, 9-16.	8.2	7
255	Ridge-based bias potentials to accelerate molecular dynamics. Journal of Chemical Physics, 2015, 143, 244104.	3.0	7
256	Hydrogen desorption from the surface and subsurface of cobalt. Physical Chemistry Chemical Physics, 2020, 22, 15281-15287.	2.8	7
257	Stability of Pt Skin Intermetallic Core Catalysts and Adsorption Properties for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 3527-3534.	3.1	7
258	Factors that influence hydrogen binding at metal-atop sites. Journal of Chemical Physics, 2021, 155, 024703.	3.0	7
259	Theoretical study of structure sensitivity on Au doped CeO2 surfaces for formaldehyde oxidation: The effect of crystal planes and Au doping. Chemical Engineering Journal, 2022, 433, 133599.	12.7	7
260	Evaluation of a V ₈ C ₇ Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 14101-14108.	6.7	6
261	PTCDA Molecular Monolayer on Pb Thin Films: An Unusual <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ï€</mml:mi> -Electron Kondo System and Its Interplay with a Quantum-Confined Superconductor. Physical Review Letters. 2021, 127, 186805.</mml:math 	7.8	6
262	Development of a Gas-Fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies. IEEE Transactions on Plasma Science, 2014, 42, 3245-3252.	1.3	5
263	Off-Lattice Kinetic Monte Carlo Methods. , 2020, , 715-743.		5
264	Green self-derived templating preparation of nitrogen, sulfur co-doped porous carbon/tin composites with synergistic effect towards high-performance lithium-ion batteries. Applied Surface Science, 2022, 580, 152319.	6.1	5
265	Simulations of long time scale dynamics using the dimer method. Materials Research Society Symposia Proceedings, 2001, 677, 811.	0.1	4
266	Guided self-assembly of electrostatic binary monolayers via isothermal-isobaric control. Journal of Chemical Physics, 2011, 135, 154501.	3.0	4
267	Probing Dynamic Processes of the Initial Stages of Cu(100) Surface Oxidation by in situ Environmental TEM and Multiscale Simulations. Microscopy and Microanalysis, 2018, 24, 262-263.	0.4	4
268	Embedded atom method potential for hydrogen on palladium surfaces. Journal of Molecular Modeling, 2020, 26, 336.	1.8	4
269	H2O2 formation mechanisms on the (1 1 2) and (3 1 0) facets of SnO2 via water oxidation reaction with the participation of Bicarbonate: DFT and experimental Investigations. Applied Surface Science, 2022, 596, 153634.	6.1	4
270	Mathematica 6.0 Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820-7237. www.wolfram.com. See Web site for pricing information Journal of the American Chemical Society, 2008, 130, 775-775.	13.7	3

#	Article	IF	CITATIONS
271	H-bonding of an NH3 gas molecule to H2O/Pt(111) — A barrier-free path. Journal of Chemical Physics, 2016, 144, 054701.	3.0	3
272	Off-Lattice Kinetic Monte Carlo Methods. , 2019, , 1-29.		3
273	Surfactant inhibition mechanisms of carbonate mineral dissolution in shale. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126857.	4.7	3
274	Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics. Journal of Chemical Theory and Computation, 2022, 18, 4447-4455.	5.3	3
275	Optimal control of electrostatic self-assembly of binary monolayers. New Journal of Physics, 2009, 11, 053014.	2.9	2
276	Calculations of selective Si epitaxial growth. Applied Surface Science, 2020, 514, 145888.	6.1	2
277	Bioinspired CNP Iron(II) Pincers Relevant to [Fe]-Hydrogenase (Hmd): Effect of Dicarbonyl versus Monocarbonyl Motifs in H ₂ Activation and Transfer Hydrogenation. Inorganic Chemistry, 2020, 59, 2548-2561.	4.0	2
278	Low temperature dissociation of CO on manganese promoted cobalt(poly). Chemical Communications, 2020, 56, 2865-2868.	4.1	2
279	Modeling of Annealing of High Concentration Arsenic Profiles. Materials Research Society Symposia Proceedings, 2001, 669, 1.	0.1	1
280	Distributed replica dynamics. Journal of Chemical Physics, 2015, 143, 174112.	3.0	1
281	Preface: Special Topic on Reaction Pathways. Journal of Chemical Physics, 2017, 147, 152401.	3.0	1
282	Combined Experimental and Theoretical Study of the Structure of AuPt Nanoparticles Prepared by Galvanic Exchange. Langmuir, 2019, 35, 16496-16507.	3.5	1
283	Improved chloride binding stability for hydration products of calcium aluminates by phosphorus modification. Journal of the American Ceramic Society, 2022, 105, 4870-4882.	3.8	1
284	Disrupting Sodium Ordering and Phase Transitions in a Layered Oxide Cathode. Journal of the Electrochemical Society, 2022, 169, 040504.	2.9	1
285	Correction to "Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction― Journal of Physical Chemistry Letters, 2012, 3, 1643-1643.	4.6	0
286	Rare event molecular dynamics simulations of plasma induced surface ablation. Journal of Chemical Physics, 2014, 141, 074706.	3.0	0
287	Off-Lattice Kinetic Monte Carlo Methods. , 2018, , 1-29.		0
288	Multiscale vacancy and dislocation-mediated surface segregation in CuNi alloy up to microsecond timescales with accelerated dynamics. Microscopy and Microanalysis, 2021, 27, 2408-2410.	0.4	0

#	Article	IF	CITATIONS
289	Excited State Dynamic-Node Diffusion Monte Carlo Simulations. , 2000, , 155-185.		0
290	Long-Time-Scale Simulations of Al(100) Crystal Growth. , 2002, , 63-74.		0
291	Solid State and Intercalation Chemistry of Nickel-Tellurate Cathodes for Lithium and Sodium Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 204-204.	0.0	0