List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555484/publications.pdf Version: 2024-02-01



RAZ FUNER

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Size-Selective Detection of Nanoparticles in Solution and Air by Imprinting. ACS Sensors, 2022, 7, 296-303.                                                                                             | 7.8  | 6         |
| 2  | Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids and<br>Surfaces B: Biointerfaces, 2022, 212, 112374.                                                     | 5.0  | 1         |
| 3  | Visual organophosphate vapor sensing by dibenzylidine derivatives exhibiting intramolecular charge<br>transfer and aggregation induced emission. Journal of Materials Chemistry C, 2022, 10, 5458-5465. | 5.5  | 4         |
| 4  | Mitochondria membrane transformations in colon and prostate cancer and their biological implications. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183471.                                 | 2.6  | 8         |
| 5  | Aggregationâ€Dependent Chromism and Photopolymerization of Aminoanthraquinoneâ€Substituted<br>Diacetylenes. Advanced Optical Materials, 2021, 9, 2001497.                                               | 7.3  | 8         |
| 6  | The pro-apoptotic domain of BIM protein forms toxic amyloid fibrils. Cellular and Molecular Life Sciences, 2021, 78, 2145-2155.                                                                         | 5.4  | 7         |
| 7  | Dual concentration-dependent effect of ascorbic acid on PAP(248–286) amyloid formation and SEVI-mediated HIV infection. RSC Chemical Biology, 2021, 2, 1534-1545.                                       | 4.1  | 1         |
| 8  | Inhibition of tau amyloid formation and disruption of its preformed fibrils by<br>Naphthoquinone–Dopamine hybrid. FEBS Journal, 2021, 288, 4267-4290.                                                   | 4.7  | 14        |
| 9  | Cross-kingdom inhibition of bacterial virulence and communication by probiotic yeast metabolites.<br>Microbiome, 2021, 9, 70.                                                                           | 11.1 | 14        |
| 10 | Triphenylphosphoniumâ€Derived Bright Green Fluorescent Carbon Dots for Mitochondrial Targeting<br>and Rapid Selective Detection of Tetracycline. ChemNanoMat, 2021, 7, 545-552.                         | 2.8  | 25        |
| 11 | A Mechanism for the Inhibition of Tau Neurotoxicity: Studies with Artificial Membranes, Isolated Mitochondria, and Intact Cells. ACS Chemical Neuroscience, 2021, 12, 1563-1577.                        | 3.5  | 1         |
| 12 | Sniffing Bacteria with a Carbon-Dot Artificial Nose. Nano-Micro Letters, 2021, 13, 112.                                                                                                                 | 27.0 | 18        |
| 13 | Tungstenâ€Disulfide/Polyaniline High Frequency Supercapacitors. Advanced Electronic Materials, 2021,<br>7, 2100025.                                                                                     | 5.1  | 25        |
| 14 | Chromatic Dendrimer/Polydiacetylene Nanoparticles. ACS Applied Polymer Materials, 2021, 3, 2931-2937.                                                                                                   | 4.4  | 12        |
| 15 | Carbon dot-polymer nanoporous membrane for recyclable sunlight-sterilized facemasks. Journal of<br>Colloid and Interface Science, 2021, 592, 342-348.                                                   | 9.4  | 28        |
| 16 | Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers. Cell<br>Chemical Biology, 2021, 28, 1310-1320.e5.                                                         | 5.2  | 15        |
| 17 | $\hat{I}^2$ -Amyloid fibrils catalyze neurotransmitter degradation. Chem Catalysis, 2021, 1, 908-922.                                                                                                   | 6.1  | 24        |
| 18 | The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .      | 7.1  | 41        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.                                                                                           | 12.8 | 7         |
| 20 | Bcl-2-Homology-Only Proapoptotic Peptides Modulate Î <sup>2</sup> -Amyloid Aggregation and Toxicity. ACS Chemical Neuroscience, 2021, 12, 4554-4563.                                                 | 3.5  | 1         |
| 21 | Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like<br>symptoms in animal model. Cellular and Molecular Life Sciences, 2020, 77, 2795-2813.                | 5.4  | 46        |
| 22 | Solar-mediated oil-spill cleanup by a carbon dot-polyurethane sponge. Carbon, 2020, 160, 196-203.                                                                                                    | 10.3 | 58        |
| 23 | Nanostructured Nickel/Ruthenium/Rutheniumâ€Oxide Supercapacitor Displaying Exceptional High<br>Frequency Response. Advanced Electronic Materials, 2020, 6, 1900844.                                  | 5.1  | 20        |
| 24 | Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance<br>Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 50287-50302.                   | 8.0  | 40        |
| 25 | Nickel Alloying Significantly Enhances the Power Density of Rutheniumâ€Based Supercapacitors.<br>Batteries and Supercaps, 2020, 3, 792-792.                                                          | 4.7  | 0         |
| 26 | Sunlight-Activated Phase Transformation in Carbon Dot-Hydrogel Facilitates Water Purification and Optical Switching. ACS Applied Polymer Materials, 2020, 2, 2810-2818.                              | 4.4  | 21        |
| 27 | Porous Graphene Oxide–Metal Ion Composite for Selective Sensing of Organophosphate Gases. ACS<br>Sensors, 2020, 5, 1573-1581.                                                                        | 7.8  | 28        |
| 28 | Nickel Alloying Significantly Enhances the Power Density of Rutheniumâ€Based Supercapacitors.<br>Batteries and Supercaps, 2020, 3, 946-952.                                                          | 4.7  | 3         |
| 29 | Aβ42 Double Mutant Inhibits Aβ42-Induced Plasma and Mitochondrial Membrane Disruption in Artificial<br>Membranes, Isolated Organs, and Intact Cells. ACS Chemical Neuroscience, 2020, 11, 1027-1037. | 3.5  | 23        |
| 30 | Polydiacetylene–Perylenediimide Supercapacitors. ChemSusChem, 2020, 13, 3230-3236.                                                                                                                   | 6.8  | 27        |
| 31 | Revisiting thioflavin T (ThT) fluorescence as a marker of protein fibrillation – The prominent role of electrostatic interactions. Journal of Colloid and Interface Science, 2020, 573, 87-95.       | 9.4  | 46        |
| 32 | Polydiacetylene hydrogel self-healing capacitive strain sensor. Journal of Materials Chemistry C, 2020,<br>8, 6034-6041.                                                                             | 5.5  | 53        |
| 33 | Current progress in carbon dots: synthesis, properties and applications. Materials Chemistry Frontiers, 2020, 4, 1287-1288.                                                                          | 5.9  | 13        |
| 34 | Imaging Flow Cytometry Illuminates New Dimensions of Amyloid Peptide-Membrane Interactions.<br>Biophysical Journal, 2020, 118, 1270-1278.                                                            | 0.5  | 2         |
| 35 | Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide.<br>Nanoscale Advances, 2020, 2, 5866-5873.                                                            | 4.6  | 7         |
| 36 | Solar-Enabled Water Remediation via Recyclable Carbon Dot/Hydrogel Composites. ACS Sustainable Chemistry and Engineering, 2019, 7, 13186-13194.                                                      | 6.7  | 59        |

| #  | Article                                                                                                                                                                                                                   | IF              | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 37 | Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core.<br>Chemical Communications, 2019, 55, 8595-8598.                                                                    | 4.1             | 14           |
| 38 | Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances. ACS Nano, 2019, 13, 1703-1712.                                                                                                            | 14.6            | 19           |
| 39 | Aggregationâ€Induced Emission: Crystallizationâ€Induced Emissive Invisible Ink (Advanced Optical) Tj ETQq1 1                                                                                                              | 0.784314<br>7.3 | rgBT /Overlo |
| 40 | Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between<br>Alzheimer's Disease and Neuronal Cell Death. ACS Chemical Neuroscience, 2019, 10, 3555-3564.                               | 3.5             | 21           |
| 41 | Elastic carbon dot/polymer films for fluorescent tensile sensing and mechano-optical tuning. Carbon, 2019, 152, 363-371.                                                                                                  | 10.3            | 42           |
| 42 | Graphene Quantum Dots Wrapped Gold Nanoparticles with Integrated Enhancement Mechanisms as<br>Sensitive and Homogeneous Substrates for Surface-Enhanced Raman Spectroscopy. Analytical<br>Chemistry, 2019, 91, 7295-7303. | 6.5             | 39           |
| 43 | Crystallizationâ€Induced Emissive Invisible Ink. Advanced Optical Materials, 2019, 7, 1900232.                                                                                                                            | 7.3             | 8            |
| 44 | Covalently Linked Perylene Diimide–Polydiacetylene Nanofibers Display Enhanced Stability and<br>Photocurrent with Reversible FRET Phenomenon. Small, 2019, 15, e1901342.                                                  | 10.0            | 34           |
| 45 | Tryptophan–glucosamine conjugates modulate tau-derived PHF6 aggregation at low concentrations.<br>Chemical Communications, 2019, 55, 14621-14624.                                                                         | 4.1             | 13           |
| 46 | Selective Labeling and Growth Inhibition of <i>Pseudomonas aeruginosa</i> by Aminoguanidine Carbon Dots. ACS Infectious Diseases, 2019, 5, 292-302.                                                                       | 3.8             | 50           |
| 47 | Flexible Asymmetric Microsupercapacitors from Freestanding Hollow Nickel Microfiber Electrodes.<br>Advanced Electronic Materials, 2019, 5, 1800584.                                                                       | 5.1             | 3            |
| 48 | Polydiacetylene Capacitive Artificial Nose. ACS Applied Materials & amp; Interfaces, 2019, 11, 4470-4479.                                                                                                                 | 8.0             | 26           |
| 49 | Fluorescent Self-Healing Carbon Dot/Polymer Gels. ACS Nano, 2019, 13, 1433-1442.                                                                                                                                          | 14.6            | 73           |
| 50 | Flexible Microsupercapacitors: Flexible Asymmetric Microsupercapacitors from Freestanding Hollow<br>Nickel Microfiber Electrodes (Adv. Electron. Mater. 1/2019). Advanced Electronic Materials, 2019, 5,<br>1970003.      | 5.1             | 0            |
| 51 | Vesicle-Based Assays to Study Membrane Interactions of Amyloid Peptides. Methods in Molecular<br>Biology, 2019, 1873, 39-51.                                                                                              | 0.9             | 4            |
| 52 | Cardiolipin mediates curcumin interactions with mitochondrial membranes. Biochimica Et Biophysica<br>Acta - Biomembranes, 2019, 1861, 75-82.                                                                              | 2.6             | 11           |
| 53 | Carbon and Nitrogen Based Nanosheets as Fluorescent Probes with Tunable Emission. Small, 2018, 14, e1800516.                                                                                                              | 10.0            | 20           |
| 54 | Reciprocal Interactions between Membrane Bilayers and S. aureus PSMα3 Cross-α Amyloid Fibrils<br>Account for Species-Specific Cytotoxicity. Journal of Molecular Biology, 2018, 430, 1431-1441.                           | 4.2             | 28           |

| #  | Article                                                                                                                                                                                         | IF                | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 55 | Nanoparticles modulate membrane interactions of human Islet amyloid polypeptide (hIAPP). Biochimica<br>Et Biophysica Acta - Biomembranes, 2018, 1860, 1810-1817.                                | 2.6               | 11           |
| 56 | Synthesis and characterization of a nanostructured porous silicon/carbon dot-hybrid for orthogonal molecular detection. NPG Asia Materials, 2018, 10, e463-e463.                                | 7.9               | 29           |
| 57 | Bacterial Model Membranes Reshape Fibrillation of a Functional Amyloid Protein. Biochemistry, 2018,<br>57, 5230-5238.                                                                           | 2.5               | 20           |
| 58 | Membrane Determinants Affect Fibrillation Processes of β-Sheet Charged Peptides. Biomacromolecules, 2018, 19, 307-314.                                                                          | 5.4               | 2            |
| 59 | Inhibitory Effect of Naphthoquinone-Tryptophan Hybrid towards Aggregation of PAP f39 Semen<br>Amyloid. Molecules, 2018, 23, 3279.                                                               | 3.8               | 14           |
| 60 | Porous Silicon Bragg Reflector/Carbon Dot Hybrids: Synthesis, Nanostructure, and Optical<br>Properties. Frontiers in Chemistry, 2018, 6, 574.                                                   | 3.6               | 12           |
| 61 | Lysineâ€Derived Carbon Dots for Chiral Inhibition of Prion Peptide Fibril Assembly. Advanced Therapeutics, 2018, 1, 1800006.                                                                    | 3.2               | 23           |
| 62 | Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots.<br>Chemical Communications, 2018, 54, 7762-7765.                                                   | 4.1               | 95           |
| 63 | "On/off/on―hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots. Sensors and<br>Actuators B: Chemical, 2018, 270, 223-230.                                                       | 7.8               | 34           |
| 64 | Tb(III) complexes with nonyl-substituted calix[4]arenes as building blocks of hydrophilic luminescent mixed polydiacetylene-based aggregates. Journal of Molecular Liquids, 2018, 268, 463-470. | 4.9               | 6            |
| 65 | Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits β-Amyloid Cytotoxicity, Fibrillation, and<br>Membrane Interactions. ACS Chemical Neuroscience, 2017, 8, 884-891.                 | 3.5               | 60           |
| 66 | Porous graphene oxide chemi-capacitor vapor sensor array. Journal of Materials Chemistry C, 2017, 5,<br>1128-1135.                                                                              | 5.5               | 37           |
| 67 | Catalytic Au Woolâ€Ballâ€Shaped Nanostructures. ChemCatChem, 2017, 9, 2473-2479.                                                                                                                | 3.7               | 3            |
| 68 | Freestanding Gold/Grapheneâ€Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy<br>Density. ChemSusChem, 2017, 10, 2736-2741.                                                | 6.8               | 14           |
| 69 | Colorimetric Polydiacetylene–Aerogel Detector for Volatile Organic Compounds (VOCs). ACS Applied<br>Materials & Interfaces, 2017, 9, 2891-2898.                                                 | 8.0               | 139          |
| 70 | Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Advances, 2017, 7, 588-594.                                                                                                    | 3.6               | 51           |
| 71 | Carbon Nanomaterials: Carbon Nanomaterials in Biological Studies and Biomedicine (Adv. Healthcare) Tj ETQq1                                                                                     | 1 0.784314<br>7.6 | 4 rgBT /Over |
| 72 | Nitric Oxide Sensing through Azo-Dye Formation on Carbon Dots. ACS Sensors, 2017, 2, 1215-1224.                                                                                                 | 7.8               | 63           |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Carbon Nanomaterials in Biological Studies and Biomedicine. Advanced Healthcare Materials, 2017, 6,<br>1700574.                                                                                                                                 | 7.6 | 155       |
| 74 | Carbon Dots–Plasmonics Coupling Enables Energy Transfer and Provides Unique Chemical Signatures.<br>Journal of Physical Chemistry Letters, 2017, 8, 6080-6085.                                                                                  | 4.6 | 11        |
| 75 | Porous Gold Nanotubes for Enhanced Methanol Oxidation Catalysis. ChemistrySelect, 2017, 2, 10961-10964.                                                                                                                                         | 1.5 | 6         |
| 76 | Carbon-dot-aerogel sensor for aromatic volatile organic compounds. Sensors and Actuators B:<br>Chemical, 2017, 241, 607-613.                                                                                                                    | 7.8 | 71        |
| 77 | Bifunctional Carbonâ€Đotâ€WS <sub>2</sub> Nanorods for Photothermal Therapy and Cell Imaging.<br>Chemistry - A European Journal, 2017, 23, 963-969.                                                                                             | 3.3 | 22        |
| 78 | Polydiacetylene sensor interaction with food sanitizers and surfactants. Food Chemistry, 2017, 221, 515-520.                                                                                                                                    | 8.2 | 19        |
| 79 | Detection of Reactive Oxygen Species by a Carbon-Dot–Ascorbic Acid Hydrogel. Analytical Chemistry, 2017, 89, 830-836.                                                                                                                           | 6.5 | 60        |
| 80 | Carbon Quantum Dots. Carbon Nanostructures, 2017, , .                                                                                                                                                                                           | 0.1 | 61        |
| 81 | Bioimaging Applications of Carbon-Dots. Carbon Nanostructures, 2017, , 61-70.                                                                                                                                                                   | 0.1 | 9         |
| 82 | Carbon-Dot Synthesis. Carbon Nanostructures, 2017, , 5-27.                                                                                                                                                                                      | 0.1 | 15        |
| 83 | Characterization and Physical Properties of Carbon-Dots. Carbon Nanostructures, 2017, , 29-46.                                                                                                                                                  | 0.1 | 25        |
| 84 | Carbon-Dots in Sensing Applications. Carbon Nanostructures, 2017, , 71-91.                                                                                                                                                                      | 0.1 | 0         |
| 85 | Thenoyltrifluoroacetone (TTA)–Carbon Dot/Aerogel Fluorescent Sensor for Lanthanide and Actinide<br>Ions. ACS Omega, 2017, 2, 9288-9295.                                                                                                         | 3.5 | 31        |
| 86 | Imaging Cancer Cells Expressing the Folate Receptor with Carbon Dots Produced from Folic Acid.<br>ChemBioChem, 2016, 17, 614-619.                                                                                                               | 2.6 | 114       |
| 87 | Pomegranate Juice Polyphenols Induce Macrophage Death via Apoptosis as Opposed to Necrosis<br>Induced by Free Radical Generation: A Central Role for Oxidative Stress. Journal of Cardiovascular<br>Pharmacology, 2016, 68, 106-114.            | 1.9 | 13        |
| 88 | Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic<br>determinant of prion protein through accelerating fibril formation. Biochimica Et Biophysica Acta -<br>Biomembranes, 2016, 1858, 2208-2214. | 2.6 | 18        |
| 89 | High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.<br>Journal of Colloid and Interface Science, 2016, 472, 84-89.                                                                              | 9.4 | 16        |
| 90 | Conductive and SERS-active colloidal gold films spontaneously formed at a liquid/liquid interface.<br>RSC Advances, 2016, 6, 33326-33331.                                                                                                       | 3.6 | 7         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Light-Induced Conductivity in a Solution-Processed Film of Polydiacetylene and Perylene Diimide.<br>Journal of Physical Chemistry Letters, 2016, 7, 1628-1631.                                 | 4.6 | 20        |
| 92  | Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate. Biophysical Journal, 2016, 110, 2016-2025.                                                                               | 0.5 | 31        |
| 93  | "Bottom-up―transparent electrodes. Journal of Colloid and Interface Science, 2016, 482, 267-289.                                                                                               | 9.4 | 17        |
| 94  | Hierarchical Assembly of Polydiacetylene Microtube Biosensors Mediated by Divalent Metal Ions.<br>ChemPlusChem, 2016, 81, 119-124.                                                             | 2.8 | 16        |
| 95  | Carbon-Dot/Silver-Nanoparticle Flexible SERS-Active Films. ACS Applied Materials & Interfaces, 2016, 8, 25637-25643.                                                                           | 8.0 | 68        |
| 96  | Colorimetric analysis of painting materials using polymer-supported polydiacetylene films. New<br>Journal of Chemistry, 2016, 40, 9054-9059.                                                   | 2.8 | 15        |
| 97  | Imaging <i>Pseudomonas aeruginosa</i> Biofilm Extracellular Polymer Scaffolds with Amphiphilic<br>Carbon Dots. ACS Chemical Biology, 2016, 11, 1265-1270.                                      | 3.4 | 43        |
| 98  | Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis.<br>Nanoscale, 2016, 8, 3400-3406.                                                                | 5.6 | 79        |
| 99  | "Beating speckles―via electrically-induced vibrations of Au nanorods embedded in sol-gel. Scientific<br>Reports, 2015, 4, 3666.                                                                | 3.3 | 2         |
| 100 | Chromatic polymer assays for the analysis of lipid and lipoprotein peroxidation. Lipid Technology, 2015, 27, 86-89.                                                                            | 0.3 | 3         |
| 101 | Single‣tep Assembly of Largeâ€Area, Transparent Conductive Patterns Induced Through Edge Adsorption<br>of Templateâ€Confined Auâ€Thiocyanate. Advanced Materials Interfaces, 2015, 2, 1400430. | 3.7 | 7         |
| 102 | Colorimetric Polymer Assay for the Diagnosis of Plasma Lipids Atherogenic Quality in<br>Hypercholesterolemic Patients. Molecular Diagnosis and Therapy, 2015, 19, 35-43.                       | 3.8 | 6         |
| 103 | Mixed Diacetylene/Octadecyl Melamine Nanowires Formed at the Air/Water Interface Exhibit Unique<br>Structural and Colorimetric Properties. Langmuir, 2015, 31, 5843-5850.                      | 3.5 | 31        |
| 104 | A flexible high-sensitivity piezoresistive sensor comprising a Au nanoribbon-coated polymer sponge.<br>Journal of Materials Chemistry C, 2015, 3, 9247-9252.                                   | 5.5 | 46        |
| 105 | Stacking interactions by two Phe side chains stabilize and orient assemblies of even the minimal amphiphilic Î <sup>2</sup> -sheet motif. Chemical Communications, 2015, 51, 3154-3157.        | 4.1 | 26        |
| 106 | Bacterial detection with amphiphilic carbon dots. Analyst, The, 2015, 140, 4232-4237.                                                                                                          | 3.5 | 103       |
| 107 | Unilamellar Vesicles from Amphiphilic Graphene Quantum Dots. Chemistry - A European Journal, 2015,<br>21, 7755-7759.                                                                           | 3.3 | 16        |
| 108 | Polymeric carrier-mediated intracellular delivery of phosphatidylinositol-3,4,5-trisphosphate to overcome insulin resistance. Journal of Drug Targeting, 2015, 23, 698-709.                    | 4.4 | 4         |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Photocatalytic hybrid Au/ZnO nanoparticles assembled through a one-pot method. Journal of Colloid and Interface Science, 2015, 460, 113-118.                                                                                           | 9.4  | 26        |
| 110 | Directed self-assembly of graphene oxide on an electrospun polymer fiber template. Carbon, 2015, 95, 888-894.                                                                                                                          | 10.3 | 11        |
| 111 | Toxicity Inhibitors Protect Lipid Membranes from Disruption by Aβ42. ACS Chemical Neuroscience, 2015, 6, 1860-1869.                                                                                                                    | 3.5  | 28        |
| 112 | Dramatic Shape Modulation of Surfactant/Diacetylene Microstructures at the Air–Water Interface.<br>Chemistry - A European Journal, 2014, 20, 16747-16752.                                                                              | 3.3  | 7         |
| 113 | Nanostructure Synthesis at the Solid–Water Interface: Spontaneous Assembly and Chemical<br>Transformations of Tellurium Nanorods. ChemPhysChem, 2014, 15, 3026-3031.                                                                   | 2.1  | 5         |
| 114 | Spontaneous Assembly of Extremely Long, Horizontallyâ€Aligned, Conductive Gold Microâ€Wires in a<br>Langmuir Monolayer Template. Advanced Materials Interfaces, 2014, 1, 1400187.                                                      | 3.7  | 7         |
| 115 | A novel approach for noninvasive drug delivery and sensing through the amniotic sac. Journal of Controlled Release, 2014, 183, 105-113.                                                                                                | 9.9  | 9         |
| 116 | Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP. Bioorganic and Medicinal Chemistry, 2014, 22, 3123-3140.                                                              | 3.0  | 11        |
| 117 | Nonplanar Conductive Surfaces via "Bottom-Up―Nanostructured Gold Coating. ACS Applied Materials<br>& Interfaces, 2014, 6, 3341-3346.                                                                                                   | 8.0  | 16        |
| 118 | Poly(methyl methacrylate)-Supported Polydiacetylene Films: Unique Chromatic Transitions and<br>Molecular Sensing. ACS Applied Materials & Interfaces, 2014, 6, 8613-8620.                                                              | 8.0  | 70        |
| 119 | Membrane analysis with amphiphilic carbon dots. Chemical Communications, 2014, 50, 10299-10302.                                                                                                                                        | 4.1  | 84        |
| 120 | Transparent, conductive polystyrene in three dimensional configurations. Polymer, 2014, 55, 5095-5101.                                                                                                                                 | 3.8  | 9         |
| 121 | Aligned Au Microâ€Wires: Spontaneous Assembly of Extremely Long, Horizontallyâ€Aligned, Conductive<br>Gold Microâ€Wires in a Langmuir Monolayer Template (Adv. Mater. Interfaces 8/2014). Advanced<br>Materials Interfaces, 2014, 1, . | 3.7  | 1         |
| 122 | Lipid Bilayers Significantly Modulate Cross-Fibrillation of Two Distinct Amyloidogenic Peptides.<br>Journal of the American Chemical Society, 2013, 135, 13582-13589.                                                                  | 13.7 | 25        |
| 123 | Transparent, conductive gold nanowire networks assembled from soluble Au thiocyanate. Chemical Communications, 2013, 49, 8552.                                                                                                         | 4.1  | 30        |
| 124 | Polydiacetylenes $\hat{a} \in \hat{~}$ recent molecular advances and applications. RSC Advances, 2013, 3, 21192.                                                                                                                       | 3.6  | 140       |
| 125 | Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations,<br>Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. Journal of Physical Chemistry<br>B, 2013, 117, 11530-11540.         | 2.6  | 34        |
| 126 | Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template. Nanoscale, 2013, 5, 10487.                                                                                                   | 5.6  | 27        |

| #   | Article                                                                                                                                                                                       | IF                 | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 127 | Aggregation Modulators Interfere with Membrane Interactions ofÂβ2-Microglobulin Fibrils. Biophysical<br>Journal, 2013, 105, 745-755.                                                          | 0.5                | 27           |
| 128 | N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide. Toxicon, 2013, 75, 177-186.                                                 | 1.6                | 15           |
| 129 | Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. International Journal of Pharmaceutics, 2013, 450, 241-249.            | 5.2                | 26           |
| 130 | Patterned Transparent Conductive Au Films through Direct Reduction of Gold Thiocyanate. Advanced<br>Functional Materials, 2013, 23, 5663-5668.                                                | 14.9               | 25           |
| 131 | Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proceedings of the<br>National Academy of Sciences of the United States of America, 2012, 109, 20455-20460. | 7.1                | 162          |
| 132 | Membrane interactions of ionic liquids: Possible determinants for biological activity and toxicity.<br>Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2967-2974.                   | 2.6                | 102          |
| 133 | Biofilm Formation on Chromatic Sol–Gel/Polydiacetylene Films. ChemPlusChem, 2012, 77, 752-757.                                                                                                | 2.8                | 9            |
| 134 | Highly compacted DNA nanoparticles with low MW PEG coatings: In vitro, ex vivo and in vivo evaluation. Journal of Controlled Release, 2012, 157, 72-79.                                       | 9.9                | 79           |
| 135 | Gold Nanoparticle Self-Assembly in Two-Component Lipid Langmuir Monolayers. Langmuir, 2011, 27, 1260-1268.                                                                                    | 3.5                | 21           |
| 136 | Polydiacetylene-supported silica films formed at the air/water interface. Journal of Colloid and Interface Science, 2011, 364, 428-434.                                                       | 9.4                | 7            |
| 137 | Selfâ€Assembled Transparent Conductive Electrodes from Au Nanoparticles in Surfactant Monolayer<br>Templates. Advanced Materials, 2011, 23, 4327-4331.                                        | 21.0               | 32           |
| 138 | Heparin Inhibits Membrane Interactions and Lipidâ€Induced Fibrillation of a Prion Amyloidogenic<br>Determinant. ChemBioChem, 2011, 12, 761-767.                                               | 2.6                | 9            |
| 139 | Some Phorbol Esters Might Partially Resemble Bryostatin 1 in their Actions on LNCaP Prostate Cancer<br>Cells and U937 Leukemia Cells. ChemBioChem, 2011, 12, 1242-1251.                       | 2.6                | 22           |
| 140 | <i>N</i> â€Methylâ€Substituted Fluorescent DAG–Indololactone Isomers Exhibit Dramatic Differences in<br>Membrane Interactions and Biological Activity. ChemBioChem, 2011, 12, 2331-2340.      | 2.6                | 9            |
| 141 | Amyloid – Membrane Interactions: Experimental Approaches and Techniques. Current Protein and<br>Peptide Science, 2010, 11, 372-384.                                                           | 1.4                | 17           |
| 142 | Editorial [Hot topic: Membrane Interactions of Amyloid Proteins and Peptides (Guest Editor: Raz) Tj ETQq0 0 0 rg                                                                              | gBT /Overlo<br>1.4 | ock 10 Tf 50 |
| 143 | Divergent Heparinâ€Induced Fibrillation Pathways of a Prion Amyloidogenic Determinant. ChemBioChem, 2010, 11, 1997-2002.                                                                      | 2.6                | 27           |

144Membraneâ€Surface Anchoring of Charged Diacylglycerolâ€Lactones Correlates with Biological2.62Activities. ChemBioChem, 2010, 11, 2003-2009.2.62

| #   | Article                                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Inside Cover: Membrane-Surface Anchoring of Charged Diacylglycerol-Lactones Correlates with<br>Biological Activities (ChemBioChem 14/2010). ChemBioChem, 2010, 11, 1926-1926.                                                                                                                                             | 2.6  | 0         |
| 146 | The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: The melanocortin agonist paradigm. Bioorganic and Medicinal Chemistry, 2010, 18, 580-589.                                                                                                                                    | 3.0  | 36        |
| 147 | Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities. FEBS Journal, 2010, 277, 233-243.                                                                                                                                                    | 4.7  | 15        |
| 148 | Specific Mutations Alter Fibrillation Kinetics, Fiber Morphologies, and Membrane Interactions of<br>Pentapeptides Derived from Human Calcitonin. Biochemistry, 2010, 49, 5299-5307.                                                                                                                                       | 2.5  | 16        |
| 149 | Gold Nanoparticle Self-Assembly in Saturated Phospholipid Monolayers. Langmuir, 2010, 26, 7893-7898.                                                                                                                                                                                                                      | 3.5  | 22        |
| 150 | Lipid-Induced Calcitonin Fibrillation Blocks Membrane Interactions of a Peptide Antibiotic. Journal of<br>Physical Chemistry B, 2010, 114, 15530-15535.                                                                                                                                                                   | 2.6  | 3         |
| 151 | Membrane Interactions of Novicidin, a Novel Antimicrobial Peptide: Phosphatidylglycerol Promotes<br>Bilayer Insertion. Journal of Physical Chemistry B, 2010, 114, 11053-11060.                                                                                                                                           | 2.6  | 25        |
| 152 | Lipidâ€Modulated Pharmacophore Nanorods Assembled at the Air/Water Interface. ChemPhysChem, 2009, 10, 2615-2619.                                                                                                                                                                                                          | 2.1  | 3         |
| 153 | Laserâ€Modulated Ordering of Gold Nanoparticles at the Air/Water Interface. Angewandte Chemie -<br>International Edition, 2009, 48, 4540-4542.                                                                                                                                                                            | 13.8 | 11        |
| 154 | Gold Nanostructures in Diacetylene Monolayer Templates. Journal of the American Chemical Society, 2009, 131, 2430-2431.                                                                                                                                                                                                   | 13.7 | 11        |
| 155 | Conformationally Constrained Analogues of Diacylglycerol (DAG). 31. Modulation of the Biological<br>Properties of Diacylgycerol Lactones (DAG-lactones) Containing Rigid-Rod Acyl Groups Separated<br>from the Core Lactone by Spacer Units of Different Lengths. Journal of Medicinal Chemistry, 2009, 52,<br>3274-3283. | 6.4  | 8         |
| 156 | Phospholipid-Induced Fibrillation of a Prion Amyloidogenic Determinant at the Air/Water Interface.<br>Langmuir, 2009, 25, 12501-12506.                                                                                                                                                                                    | 3.5  | 22        |
| 157 | Screening Membrane Interactions of Pesticides by Cells Decorated with Chromatic Polymer Nanopatches. Chemical Research in Toxicology, 2009, 22, 90-96.                                                                                                                                                                    | 3.3  | 11        |
| 158 | Lipoprotein interactions with chromatic membranes as a novel marker for oxidative stress-related diseases. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2436-2443.                                                                                                                                           | 2.6  | 5         |
| 159 | Biomimetic approaches for studying membrane processes. Molecular BioSystems, 2009, 5, 811.                                                                                                                                                                                                                                | 2.9  | 25        |
| 160 | Colorimetric Polymer Films for Predicting Lipid Interactions and Percutaneous Adsorption of Pharmaceutical Formulations. Pharmaceutical Research, 2008, 25, 2815-2821.                                                                                                                                                    | 3.5  | 1         |
| 161 | Improving Oral Bioavailability of Peptides by Multiple Nâ€Methylation: Somatostatin Analogues.<br>Angewandte Chemie - International Edition, 2008, 47, 2595-2599.                                                                                                                                                         | 13.8 | 310       |
| 162 | Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane<br>assay. Peptides, 2008, 29, 1620-1625.                                                                                                                                                                               | 2.4  | 30        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Membrane processes and biophysical characterization of living cells decorated with chromatic polydiacetylene vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1335-1343.                                           | 2.6  | 9         |
| 164 | Membrane interactions and lipid binding of casein oligomers and early aggregates. Biochimica Et<br>Biophysica Acta - Biomembranes, 2008, 1778, 2341-2349.                                                                             | 2.6  | 30        |
| 165 | Self-Assembly and Lipid Interactions of Diacylglycerol Lactone Derivatives Studied at the Air/Water<br>Interface. Langmuir, 2008, 24, 11043-11052.                                                                                    | 3.5  | 6         |
| 166 | Lipid/Polydiacetylene Films for Colorimetric Protein Surface-Charge Analysis. Analytical Chemistry, 2008, 80, 7804-7811.                                                                                                              | 6.5  | 28        |
| 167 | Mechanisms of α-Defensin Bactericidal Action: Comparative Membrane Disruption by Cryptdin-4 and Its<br>Disulfide-Null Analogue. Biochemistry, 2008, 47, 12626-12634.                                                                  | 2.5  | 45        |
| 168 | Colorimetric Detection and Fingerprinting of Bacteria by Glass-Supported Lipid/Polydiacetylene Films.<br>Langmuir, 2007, 23, 4682-4687.                                                                                               | 3.5  | 69        |
| 169 | Biomolecular Sensing with Colorimetric Vesicles. , 2007, , 155-180.                                                                                                                                                                   |      | 52        |
| 170 | Effect of Structural and Conformation Modifications, Including Backbone Cyclization, of<br>Hydrophilic Hexapeptides on Their Intestinal Permeability and Enzymatic Stability. Journal of Medicinal<br>Chemistry, 2007, 50, 6201-6211. | 6.4  | 79        |
| 171 | Glass-supported lipid/polydiacetylene films for colour sensing of membrane-active compounds.<br>Biosensors and Bioelectronics, 2007, 22, 3247-3251.                                                                                   | 10.1 | 34        |
| 172 | Rapid Chromatic Detection of Bacteria by Use of a New Biomimetic Polymer Sensor. Applied and<br>Environmental Microbiology, 2006, 72, 7339-7344.                                                                                      | 3.1  | 85        |
| 173 | Color Fingerprinting of Proteins by Calixarenes Embedded in Lipid/Polydiacetylene Vesicles. Journal of the American Chemical Society, 2006, 128, 13592-13598.                                                                         | 13.7 | 130       |
| 174 | Rapid Colorimetric Screening of Drug Interaction and Penetration Through Lipid Barriers.<br>Pharmaceutical Research, 2006, 23, 580-588.                                                                                               | 3.5  | 48        |
| 175 | Investigations of antimicrobial peptides in planar film systems. Biochimica Et Biophysica Acta -<br>Biomembranes, 2006, 1758, 1393-1407.                                                                                              | 2.6  | 58        |
| 176 | Imaging membrane processes in erythrocyte ghosts by surface fusion of a chromatic polymer.<br>Analytical Biochemistry, 2006, 348, 151-153.                                                                                            | 2.4  | 10        |
| 177 | Matrix Metalloproteinase-7 Activation of Mouse Paneth Cell Pro-α-defensins. Journal of Biological<br>Chemistry, 2006, 281, 28932-28942.                                                                                               | 3.4  | 39        |
| 178 | Visualization of Membrane Processes in Living Cells by Surfaceâ€Attached Chromatic Polymer Patches.<br>Angewandte Chemie - International Edition, 2005, 44, 1092-1096.                                                                | 13.8 | 59        |
| 179 | Visualization of Membrane Processes in Living Cells by Surfaceâ€Attached Chromatic Polymer Patches.<br>Angewandte Chemie, 2005, 117, 1116-1120                                                                                        | 2.0  | 3         |
| 180 | Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Advanced Functional Materials, 2005, 15, 1708-1715.                                                                                                | 14.9 | 493       |

| #   | Article                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Carbohydrate Biosensors. ChemInform, 2005, 36, no.                                                                                                                                              | 0.0  | 223       |
| 182 | Membrane Interactions of Host-defense Peptides Studied in Model Systems. Current Protein and<br>Peptide Science, 2005, 6, 103-114.                                                              | 1.4  | 50        |
| 183 | Membrane Interactions and Metal Ion Effects on Bilayer Permeation of the Lipophilic Ion Modulator DP-109. Biochemistry, 2005, 44, 12077-12085.                                                  | 2.5  | 13        |
| 184 | Selective Detection of Catecholamines by Synthetic Receptors Embedded in Chromatic Polydiacetylene<br>Vesicles. Journal of the American Chemical Society, 2005, 127, 10000-10001.               | 13.7 | 102       |
| 185 | Structure-Activity Determinants in Paneth Cell α-Defensins. Journal of Biological Chemistry, 2004, 279, 11976-11983.                                                                            | 3.4  | 63        |
| 186 | Carbohydrate Biosensors. Chemical Reviews, 2004, 104, 5987-6016.                                                                                                                                | 47.7 | 337       |
| 187 | Microscopic Visualization of Alamethicin Incorporation into Model Membrane Monolayers. Langmuir, 2004, 20, 11084-11091.                                                                         | 3.5  | 32        |
| 188 | Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Analytical Biochemistry, 2003, 319, 96-104.                                           | 2.4  | 34        |
| 189 | Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. FEBS Journal, 2003, 270, 4478-4487.                                 | 0.2  | 36        |
| 190 | The Human Islet Amyloid Polypeptide Forms Transient Membrane-Active Prefibrillar Assemblies.<br>Biochemistry, 2003, 42, 10971-10977.                                                            | 2.5  | 168       |
| 191 | Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 2003, 24, 1753-1761.                                              | 2.4  | 57        |
| 192 | Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides, 2003, 24, 1795-1805.                                                                              | 2.4  | 53        |
| 193 | Biomimetic lipid/polymer colorimetric membranes. Journal of Lipid Research, 2003, 44, 65-71.                                                                                                    | 4.2  | 58        |
| 194 | Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle<br>system. Biochemical Journal, 2003, 375, 405-413.                                           | 3.7  | 53        |
| 195 | Interactions of Mouse Paneth Cell α-Defensins and α-Defensin Precursors with Membranes. Journal of<br>Biological Chemistry, 2003, 278, 13838-13846.                                             | 3.4  | 96        |
| 196 | Colorimetric Biosensor Vesicles for Biotechnological Applications. Materials Research Society<br>Symposia Proceedings, 2002, 724, N7.23.1.                                                      | 0.1  | 1         |
| 197 | Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. FEBS Journal, 2002, 269, 3869-3880. | 0.2  | 80        |
| 198 | Rapid Colorimetric Detection of Antibodyâ^'Epitope Recognition at a Biomimetic Membrane Interface.<br>Journal of the American Chemical Society, 2001, 123, 417-422.                             | 13.7 | 166       |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | A new colorimetric assay for studying and rapid screening of membrane penetration enhancers.<br>Pharmaceutical Research, 2001, 18, 943-949.                                                                                   | 3.5  | 47        |
| 200 | Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications.<br>Biotechnology Advances, 2001, 19, 109-118.                                                                                        | 11.7 | 124       |
| 201 | Colorimetric sensors for drug discovery and biomedical diagnostics. Drug Development Research, 2000, 50, 497-501.                                                                                                             | 2.9  | 34        |
| 202 | A colorimetric assay for rapid screening of antimicrobial peptides. Nature Biotechnology, 2000, 18, 225-227.                                                                                                                  | 17.5 | 209       |
| 203 | Peptideâ^'Membrane Interactions Studied by a New Phospholipid/Polydiacetylene Colorimetric Vesicle<br>Assayâ€. Biochemistry, 2000, 39, 15851-15859.                                                                           | 2.5  | 162       |
| 204 | Cation-Selective Color Sensors Composed of Ionophoreâ^'Phospholipidâ^'Polydiacetylene Mixed<br>Vesicles. Journal of the American Chemical Society, 2000, 122, 776-780.                                                        | 13.7 | 217       |
| 205 | Identification of Heroin in Street Doses Using 1D-TOCSY Nuclear Magnetic Resonance. Journal of Forensic Sciences, 2000, 45, 963-967.                                                                                          | 1.6  | 3         |
| 206 | Induced Color Change of Conjugated Polymeric Vesicles by Interfacial Catalysis of Phospholipase A2.<br>Angewandte Chemie - International Edition, 1999, 38, 655-659.                                                          | 13.8 | 128       |
| 207 | Effects of temperature and Y21M mutation on conformational heterogeneity of the major coat protein<br>(pVIII) of filamentous bacteriophage fd 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999,<br>286, 787-796. | 4.2  | 30        |
| 208 | Interfacial catalysis by phospholipases at conjugated lipid vesicles: colorimetric detection and NMR spectroscopy. Chemistry and Biology, 1998, 5, 619-629.                                                                   | 6.0  | 67        |
| 209 | NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein. Journal of Molecular Biology, 1997, 266, 649-655.                                                       | 4.2  | 53        |