George L King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555230/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Vascular Endothelial Growth Factor in Ocular Fluid of Patients with Diabetic Retinopathy and Other Retinal Disorders. New England Journal of Medicine, 1994, 331, 1480-1487.	27.0	3,519
2	Molecular Understanding of Hyperglycemia's Adverse Effects for Diabetic Complications. JAMA - Journal of the American Medical Association, 2002, 288, 2579.	7.4	805
3	Activation of Protein Kinase C Isoforms and Its Impact on Diabetic Complications. Circulation Research, 2010, 106, 1319-1331.	4.5	743
4	Regulation of Endothelial Constitutive Nitric Oxide Synthase Gene Expression in Endothelial Cells and In Vivo. Circulation, 2000, 101, 676-681.	1.6	592
5	Vascular Complications of Diabetes: Mechanisms of Injury and Protective Factors. Cell Metabolism, 2013, 17, 20-33.	16.2	590
6	Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. Journal of Clinical Investigation, 1999, 104, 447-457.	8.2	533
7	The Role of Inflammatory Cytokines in Diabetes and Its Complications. Journal of Periodontology, 2008, 79, 1527-1534.	3.4	508
8	Residual Insulin Production and Pancreatic β-Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study. Diabetes, 2010, 59, 2846-2853.	0.6	422
9	Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC \hat{I}^2 inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB Journal, 2000, 14, 439-447.	0.5	417
10	Increased Protein Kinase C Activity and Expression of Ca ²⁺ -Sensitive Isoforms in the Failing Human Heart. Circulation, 1999, 99, 384-391.	1.6	414
11	The role of protein kinase C activation and the vascular complications of diabetes. Pharmacological Research, 2007, 55, 498-510.	7.1	409
12	Hyperglycemia-induced oxidative stress in diabetic complications. Histochemistry and Cell Biology, 2004, 122, 333-338.	1.7	407
13	Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends in Pharmacological Sciences, 2000, 21, 181-187.	8.7	393
14	Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 46-56.	2.8	386
15	Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nature Medicine, 2009, 15, 1298-1306.	30.7	375
16	Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. Journal of Clinical Investigation, 1999, 103, 185-195.	8.2	361
17	Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nature Medicine, 2017, 23, 753-762.	30.7	337
18	Decreased Cardiac Expression of Vascular Endothelial Growth Factor and Its Receptors in Insulin-Resistant and Diabetic States. Circulation, 2002, 105, 373-379.	1.6	325

#	Article	IF	CITATIONS
19	Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4343-4410.	3.6	323
20	The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. Journal of Clinical Investigation, 2003, 111, 1373-1380.	8.2	290
21	Loss of Insulin Signaling in Vascular Endothelial Cells Accelerates Atherosclerosis in Apolipoprotein E Null Mice. Cell Metabolism, 2010, 11, 379-389.	16.2	267
22	Vascular Endothelial Growth Factor Induces Expression of Connective Tissue Growth Factor via KDR, Flt1, and Phosphatidylinositol 3-Kinase-Akt-dependent Pathways in Retinal Vascular Cells. Journal of Biological Chemistry, 2000, 275, 40725-40731.	3.4	230
23	Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration. Diabetes Care, 2011, 34, 968-974.	8.6	213
24	Oxidative Stress and Antioxidant Treatment in Diabetes. Annals of the New York Academy of Sciences, 2004, 1031, 204-213.	3.8	179
25	Activation of Vascular Protein Kinase C-Â Inhibits Akt-Dependent Endothelial Nitric Oxide Synthase Function in Obesity-Associated Insulin Resistance. Diabetes, 2006, 55, 691-698.	0.6	177
26	Expression of Connective Tissue Growth Factor Is Increased in Injured Myocardium Associated With Protein Kinase C β2 Activation and Diabetes. Diabetes, 2002, 51, 2709-2718.	0.6	175
27	Characterization of protein kinase C Â isoform's action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 721-726.	7.1	174
28	Selective Insulin Resistance and the Development of Cardiovascular Diseases in Diabetes: The 2015 Edwin Bierman Award Lecture. Diabetes, 2016, 65, 1462-1471.	0.6	173
29	Reduction of Diabetes-Induced Oxidative Stress, Fibrotic Cytokine Expression, and Renal Dysfunction in Protein Kinase CÂ-Null Mice. Diabetes, 2006, 55, 3112-3120.	0.6	172
30	Clinical Factors Associated With Resistance to Microvascular Complications in Diabetic Patients of Extreme Disease Duration. Diabetes Care, 2007, 30, 1995-1997.	8.6	168
31	Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. Journal of Clinical Investigation, 2003, 111, 1835-1842.	8.2	165
32	Proatherosclerotic Mechanisms Involving Protein Kinase C in Diabetes and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 487-496.	2.4	158
33	Characterization of Retinal Leukostasis and Hemodynamics in Insulin Resistance and Diabetes: Role of Oxidants and Protein Kinase-C Activation. Diabetes, 2003, 52, 829-837.	0.6	152
34	Molecular mechanisms of diabetic vascular complications. Journal of Diabetes Investigation, 2010, 1, 77-89.	2.4	140
35	Microvascular complications of diabetes. Endocrinology and Metabolism Clinics of North America, 2004, 33, 215-238.	3.2	132
36	Cellular and Molecular Abnormalities in the Vascular Endothelium of Diabetes Mellitus. Annual Review of Medicine, 1994, 45, 179-188.	12.2	122

#	Article	IF	CITATIONS
37	Glomerular-specific protein kinase C- \hat{l}^2 -induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney International, 2011, 79, 883-896.	5.2	116
38	Role of Protein Kinase C on the Expression of Platelet-Derived Growth Factor and Endothelin-1 in the Retina of Diabetic Rats and Cultured Retinal Capillary Pericytes. Diabetes, 2003, 52, 838-845.	0.6	115
39	PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011, 121, 2504-2517.	8.2	115
40	Understanding and Addressing Unique Needs of Diabetes in Asian Americans, Native Hawaiians, and Pacific Islanders. Diabetes Care, 2012, 35, 1181-1188.	8.6	110
41	Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. Journal of Clinical Investigation, 2003, 111, 1835-1842.	8.2	106
42	Characterization of Multiple Signaling Pathways of Insulin in the Regulation of Vascular Endothelial Growth Factor Expression in Vascular Cells and Angiogenesis. Journal of Biological Chemistry, 2003, 278, 31964-31971.	3.4	97
43	Characterization of the Receptors for Insulin and the Insulin-Like Growth Factors on Micro- and Macrovascular Tissues*. Endocrinology, 1985, 117, 1222-1229.	2.8	91
44	Regulation of Vascular Endothelial Growth Factor Expression and Vascularization in the Myocardium by Insulin Receptor and PI3K/Akt Pathways in Insulin Resistance and Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 787-793.	2.4	91
45	Glucose induced genes in bovine aortic smooth muscle cells identified by mRNA differential display. FASEB Journal, 1994, 8, 103-106.	0.5	83
46	Protein Kinase C and Myocardial Biology and Function. Circulation Research, 2000, 86, 1104-1106.	4.5	80
47	Adiposeâ€specific effect of rosiglitazone on vascular permeability and protein kinase C activation: novel mechanism for PPARγ agonist's effects on edema and weight gain. FASEB Journal, 2006, 20, 1203-1205.	0.5	78
48	Oxidative Stress. Journal of the American Society of Nephrology: JASN, 2003, 14, S216-S220.	6.1	75
49	Induction of Vascular Insulin Resistance and Endothelin-1 Expression and Acceleration of Atherosclerosis by the Overexpression of Protein Kinase C-Î ² Isoform in the Endothelium. Circulation Research, 2013, 113, 418-427.	4.5	75
50	The Effect of Vitamin E on Endothelial Function of Micro- and Macrocirculation and Left Ventricular Function in Type 1 and Type 2 Diabetic Patients. Diabetes, 2005, 54, 204-211.	0.6	74
51	Can protein kinase C inhibition and vitamin E prevent the development of diabetic vascular complications?. Diabetes Research and Clinical Practice, 1999, 45, 169-182.	2.8	73
52	Molecular Targets of Diabetic Cardiovascular Complications. Current Drug Targets, 2005, 6, 487-494.	2.1	73
53	Glomerular VEGF resistance induced by PKCÎ′/SHPâ€1 activation and contribution to diabetic nephropathy. FASEB Journal, 2012, 26, 2963-2974.	0.5	72
54	Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care, 2019, 42, 1263-1273.	8.6	72

#	Article	IF	CITATIONS
55	Differential Regulation of VEGF Signaling by PKC-α and PKC-ε in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 919-924.	2.4	68
56	Can VEGF reverse diabetic neuropathy in human subjects?. Journal of Clinical Investigation, 2001, 107, 1215-1218.	8.2	68
57	Evaluating Retinal Circulation Using Video Fluorescein Angiography in Control and Diabetic Rats. Current Eye Research, 1992, 11, 287-295.	1.5	67
58	The Role of Hyperglycaemia and Hyperinsulinaemia in Causing Vascular Dysfunction in Diabetes. Annals of Medicine, 1996, 28, 427-432.	3.8	66
59	Selective Regulation of Heme Oxygenase-1 Expression and Function by Insulin through IRS1/Phosphoinositide 3-Kinase/Akt-2 Pathway. Journal of Biological Chemistry, 2008, 283, 34327-34336.	3.4	62
60	Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Science Translational Medicine, 2019, 11, .	12.4	62
61	Protein Kinase CÎ ² Isoform Inhibitors. Circulation, 2004, 110, 7-9.	1.6	59
62	A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutrition Research, 2014, 34, 491-498.	2.9	59
63	Beta 2-adrenergic receptor agonists are novelÂregulators of macrophage activation inÂdiabetic renal and cardiovascular complications. Kidney International, 2017, 92, 101-113.	5.2	59
64	PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. Journal of Clinical Investigation, 2016, 126, 837-853.	8.2	56
65	Serine Phosphorylation Sites on IRS2 Activated by Angiotensin II and Protein Kinase C To Induce Selective Insulin Resistance in Endothelial Cells. Molecular and Cellular Biology, 2013, 33, 3227-3241.	2.3	54
66	Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans. Free Radical Biology and Medicine, 2013, 65, 1506-1515.	2.9	53
67	Effects of Insulin Replacements, Inhibitors of Angiotensin, and PKCÂ's Actions to Normalize Cardiac Gene Expression and Fuel Metabolism in Diabetic Rats. Diabetes, 2007, 56, 1410-1420.	0.6	49
68	Identification of Linguistic Barriers to Diabetes Knowledge and Glycemic Control in Chinese Americans With Diabetes. Diabetes Care, 2006, 29, 415-416.	8.6	48
69	Inhibition of Insulin Signaling in Endothelial Cells by Protein Kinase C-induced Phosphorylation of p85 Subunit of Phosphatidylinositol 3-Kinase (PI3K). Journal of Biological Chemistry, 2012, 287, 4518-4530.	3.4	46
70	Cognitive Function Deficits Associated With Long-Duration Type 1 Diabetes and Vascular Complications. Diabetes Care, 2018, 41, 1749-1756.	8.6	46
71	Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight, 2016, 1, .	5.0	46
72	Role of Protein Kinase C in Glucose- and Angiotensin II-Induced Plasminogen Activator Inhibitor Expression1. Contributions To Nephrology, 1996, 118, 180-187.	1.1	45

#	Article	IF	CITATIONS
73	Clinical safety of the selective PKC-β inhibitor, ruboxistaurin. Expert Opinion on Drug Safety, 2006, 5, 835-845.	2.4	42
74	Characterization of Circulating and Endothelial Progenitor Cells in Patients With Extreme-Duration Type 1 Diabetes. Diabetes Care, 2014, 37, 2193-2201.	8.6	42
75	Exogenous Insulin Infusion Can Decrease Atherosclerosis in Diabetic Rodents by Improving Lipids, Inflammation, and Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 92-101.	2.4	42
76	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	16.2	40
77	dâ€Î±â€ŧocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase Câ€diacylglycerol pathway. BioFactors, 1998, 7, 69-76.	5.4	39
78	High Concentration of Medium-Sized HDL Particles and Enrichment in HDL Paraoxonase 1 Associate With Protection From Vascular Complications in People With Long-standing Type 1 Diabetes. Diabetes Care, 2020, 43, 178-186.	8.6	39
79	Introduction of hyperglycemia and dyslipidemia in the pathogenesis of diabetic vascular complications. Current Diabetes Reports, 2005, 5, 91-97.	4.2	38
80	Kidney complications: Factors that protect the diabetic vasculature. Nature Medicine, 2010, 16, 40-41.	30.7	34
81	Obesityâ€associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio, 2018, 8, 664-670.	2.3	34
82	Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biology, 2021, 41, 101885.	9.0	34
83	Regulation of Macrophage Apoptosis and Atherosclerosis by Lipid-Induced PKCδIsoform Activation. Circulation Research, 2017, 121, 1153-1167.	4.5	33
84	Prevention of diabetesâ€induced abnormal retinal blood flow by treatment with dâ€i±â€tocopherol. BioFactors, 1998, 7, 55-67.	5.4	32
85	Association of Glycemic Control With Reduced Risk for Large-Vessel Disease After More Than 50 Years of Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3704-3711.	3.6	32
86	Hyperinsulinemia Does Not Change Atherosclerosis Development in Apolipoprotein E Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1124-1131.	2.4	30
87	The Association of Severe Diabetic Retinopathy With Cardiovascular Outcomes in Long-standing Type 1 Diabetes: A Longitudinal Follow-up. Diabetes Care, 2018, 41, 2487-2494.	8.6	30
88	Homozygous receptors for insulin and not IGF-1 accelerate intimal hyperplasia in insulin resistance and diabetes. Nature Communications, 2019, 10, 4427.	12.8	30
89	Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Molecular Metabolism, 2021, 52, 101236.	6.5	30
90	Overexpressing IRS1 in Endothelial Cells Enhances Angioblast Differentiation and Wound Healing in Diabetes and Insulin Resistance. Diabetes, 2016, 65, 2760-2771.	0.6	29

#	Article	IF	CITATIONS
91	Angiotensin AT 1 Receptor Stimulates Heat Shock Protein 27 Phosphorylation In Vitro and In Vivo. Hypertension, 2001, 38, 1260-1265.	2.7	28
92	Implications of Treatment That Target Protective Mechanisms Against Diabetic Nephropathy. Seminars in Nephrology, 2012, 32, 471-478.	1.6	27
93	Sexual Dysfunction as a Marker of Cardiovascular Disease in Males With 50 or More Years of Type 1 Diabetes. Diabetes Care, 2013, 36, 3222-3226.	8.6	26
94	Reversal of abnormal retinal hemodynamics in diabetic rats by acarbose, an α-glucosidase inhibitor. Current Eye Research, 1995, 14, 741-749.	1.5	25
95	Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care, 2018, 41, 815-822.	8.6	23
96	SHP-1 activation inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in a rodent model of insulin resistance and diabetes. Diabetologia, 2017, 60, 585-596.	6.3	21
97	Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism. Journal of Molecular Medicine, 2018, 96, 373-381.	3.9	21
98	Characterization of periodontitis in people with type 1 diabetes of 50 years or longer duration. Journal of Periodontology, 2019, 90, 565-575.	3.4	21
99	Bactericidal/permeabilityâ€increasing protein's signaling pathways and its retinal trophic and antiâ€angiogenic effects. FASEB Journal, 2006, 20, 2058-2067.	0.5	20
100	Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI Insight, 2022, 7, .	5.0	20
101	Podocytes lose their footing. Nature, 2010, 468, 42-44.	27.8	18
102	Association of Cognitive Function and Retinal Neural and Vascular Structure in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1139-e1149.	3.6	18
103	Improvement of Insulin Sensitivity by Isoenergy High Carbohydrate Traditional Asian Diet: A Randomized Controlled Pilot Feasibility Study. PLoS ONE, 2014, 9, e106851.	2.5	17
104	Presence and Determinants of Cardiovascular Disease and Mortality in Individuals With Type 1 Diabetes of Long Duration: The FinnDiane 50 Years of Diabetes Study. Diabetes Care, 2021, 44, 1885-1893.	8.6	16
105	Elevated C-Reactive Protein Levels Do Not Correspond to Autoimmunity in Type 1 Diabetes. Diabetes Care, 2004, 27, 2769-2770.	8.6	14
106	Endothelial Cells Induced Progenitors Into Brown Fat to Reduce Atherosclerosis. Circulation Research, 2022, 131, 168-183.	4.5	14
107	Cardiovascular Disease Protection in Long-Duration Type 1 Diabetes and Sex Differences. Diabetes Care, 2015, 38, e73-e74.	8.6	13
108	High density lipoprotein modulates osteocalcin expression in circulating monocytes: a potential protective mechanism for cardiovascular disease in type 1 diabetes. Cardiovascular Diabetology, 2017, 16, 116.	6.8	13

#	Article	IF	CITATIONS
109	Can Protein Kinase C Â-Selective Inhibitor, Ruboxistaurin, Stop Vascular Complications in Diabetic Patients?. Diabetes Care, 2005, 28, 2803-2805.	8.6	11
110	Glypican 4, a Membrane Binding Protein for Bactericidal/Permeability-Increasing Protein Signaling Pathways in Retinal Pigment Epithelial Cells. , 2007, 48, 5750.		7
111	Characterization of Factors Affecting Attainment of Glycemic Control in Asian Americans With Diabetes in a Culturally Specific Program. The Diabetes Educator, 2013, 39, 468-477.	2.5	7
112	Autoantibodies to Insulin Receptors in Man: Immunological Determinants and Mechanism of Action. Novartis Foundation Symposium, 1982, , 91-113.	1.1	7
113	Associations between metabolic dysregulation and circulating biomarkers of fibrosis: the Cardiovascular Health Study. Metabolism: Clinical and Experimental, 2015, 64, 1316-1323.	3.4	6
114	Retinol binding protein 3 as biomarker for diabetic retinopathy. Annals of Translational Medicine, 2019, 7, 706-706.	1.7	5
115	Role of protein kinase C in diabetic complications. Expert Review of Endocrinology and Metabolism, 2010, 5, 77-88.	2.4	4
116	Differential effects of bactericidal/permeability-increasing protein (BPI) analogues on retinal neovascularization and retinal pericyte growth. Investigative Ophthalmology and Visual Science, 2002, 43, 503-9.	3.3	4
117	Endothelial Cell Insulin Signaling Regulates CXCR4 (C-X-C Motif Chemokine Receptor 4) and Limits Leukocyte Adhesion to Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, .	2.4	4
118	Hyperglycemia and the pathogenesis of diabetic retinopathy. Journal of General Internal Medicine, 1986, 1, 133-134.	2.6	2
119	Letter by Rask-Madsen et al Regarding Article, "Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop― Circulation Research, 2017, 120, e2-e3.	4.5	1
120	The role of protein kinase C activation in cardiovascular dysfunctions of diabetes and insulin resistance. International Congress Series, 2004, 1262, 152-155.	0.2	0
121	Response to Comment on: Sun et al. Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration: The Joslin 50-Year Medalist Study. Diabetes Care 2011;34:968–974. Diabetes Care, 2011, 34, e149-e149.	8.6	0
122	SP376β2 ADRENERGIC RECEPTOR AGONISTS: NOVEL REGULATORS OF MACROPHAGE ACTIVATION IN DIABETIC RENAL AND CARDIOVASCULAR COMPLICATIONS. Nephrology Dialysis Transplantation, 2016, 31, i214-i214.	0.7	0
123	Response to Comment on Gordin et al. Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care 2018;41:815–822. Diabetes Care, 2018, 41, e128-e128.	8.6	0
124	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 1-42.	0.1	0
125	Response to Letter to the Editor from Brunerova et al: "Association of Cognitive Function and Retinal Neural and Vascular Structure in Type 1 Diabetes― Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3789-e3790.	3.6	0
126	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 161-201.	0.1	0

#	Article	IF	CITATIONS
127	Pathogenesis of Microvascular Complications. Endocrinology, 2019, , 1-41.	0.1	0
128	Pathogenesis of Microvascular Complications. Endocrinology, 2020, , 161-201.	0.1	0
129	Inflammation and Incident Diabetes: The Role of Race and Ethnicity. Journal of Clinical Endocrinology and Metabolism, 2022, , .	3.6	0