
Jinsong Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555116/publications.pdf Version: 2024-02-01

LINSONG ZENG

#	Article	IF	CITATIONS
1	A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 2016, 23, 493-503.	4.9	117
2	Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chemistry, 2020, 22, 504-512.	9.0	95
3	Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers, 2021, 266, 118149.	10.2	90
4	Controlled Release and Long-Term Antibacterial Activity of Dialdehyde Nanofibrillated Cellulose/Silver Nanoparticle Composites. ACS Sustainable Chemistry and Engineering, 2019, 7, 1146-1158.	6.7	85
5	Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships. Carbohydrate Polymers, 2021, 254, 117441.	10.2	65
6	A water solvent-assisted condensation polymerization strategy of superhydrophobic lignocellulosic fibers for efficient oil/water separation. Journal of Materials Chemistry A, 2019, 7, 16447-16457.	10.3	61
7	Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate Polymers, 2021, 251, 117117.	10.2	58
8	Pickering emulsion stabilized by cellulosic fibers: Morphological properties-interfacial stabilization-rheological behavior relationships. Carbohydrate Polymers, 2021, 269, 118339.	10.2	58
9	Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small, 2021, 17, e2007306.	10.0	54
10	A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe ³⁺ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Materials Horizons, 2022, 9, 1412-1421.	12.2	53
11	Preparation of nanocellulose in high yield via chemi-mechanical synergy. Carbohydrate Polymers, 2021, 251, 117094.	10.2	50
12	Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers, 2021, 254, 117474.	10.2	50
13	Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell. Bioresource Technology, 2019, 282, 228-235.	9.6	47
14	Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers, 2019, 207, 44-51.	10.2	47
15	Scalable and Robust Bacterial Cellulose Carbon Aerogels as Reusable Absorbents for High-Efficiency Oil/Water Separation. ACS Applied Bio Materials, 2020, 3, 7483-7491.	4.6	45
16	Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresource Technology, 2018, 267, 426-430.	9.6	43
17	Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresource Technology, 2017, 243, 212-217.	9.6	42
18	Flexible and Hierarchical 3D Interconnected Silver Nanowires/Cellulosic Paper-Based Thermoelectric Sheets with Superior Electrical Conductivity and Ultrahigh Thermal Dispersion Capability. ACS Applied Materials & Interfaces, 2019, 11, 39088-39099.	8.0	39

JINSONG ZENG

#	Article	IF	CITATIONS
19	Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydrate Polymers, 2020, 247, 116721.	10.2	37
20	Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS Applied Materials & Interfaces, 2021, 13, 15910-15924.	8.0	37
21	Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Scientific Reports, 2021, 11, 11918.	3.3	37
22	Photochromic paper from wood pulp modification via layer-by-layer assembly of pulp fiber/chitosan/spiropyran. Carbohydrate Polymers, 2017, 157, 704-710.	10.2	36
23	Fabrications and applications of hemicellulose-based bio-adsorbents. Carbohydrate Polymers, 2022, 278, 118945.	10.2	33
24	Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure. Carbohydrate Polymers, 2018, 186, 73-81.	10.2	31
25	Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp. Carbohydrate Polymers, 2015, 127, 400-406.	10.2	28
26	Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals. Carbohydrate Polymers, 2017, 175, 105-112.	10.2	27
27	Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties. Cellulose, 2021, 28, 855-869.	4.9	25
28	Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 2022, 14, 14640-14653.	8.0	25
29	The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydrate Polymers, 2020, 230, 115631.	10.2	24
30	Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils. Cellulose, 2020, 27, 1327-1340.	4.9	22
31	Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood kraft fibers. BioResources, 2020, 15, 3809-3820.	1.0	22
32	Isolation and rheological characterization of cellulose nanofibrils (CNFs) produced by microfluidic homogenization, ball-milling, grinding and refining. Cellulose, 2021, 28, 3389-3408.	4.9	21
33	Cellulose nanocrystal dye as reinforcement matrix of lipstick for inhibiting color migration. Cellulose, 2020, 27, 905-913.	4.9	18
34	Bottomâ€Up Ecofriendly Strategy for Construction of Sustainable Bacterial Cellulose Bioaerogel with Multifunctional Properties. Advanced Materials Interfaces, 2021, 8, 2002101.	3.7	17
35	Silver-Nanoparticle-Embedded Hybrid Nanopaper with Significant Thermal Conductivity Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 36171-36181.	8.0	17
36	High-Performance and Rapid-Response Electrical Heaters Derived from Cellulose Nanofiber/Silver Nanowire Nanopapers for Portable Thermal Management. ACS Applied Materials & Interfaces, 2022, 14, 30144-30159.	8.0	17

JINSONG ZENG

#	Article	IF	CITATIONS
37	Efficient conversion of Hubrid Pennisetum to glucose by oxygen-aqueous alkaline ionic liquid media pretreatment under benign conditions. Bioresource Technology, 2017, 243, 335-338.	9.6	16
38	Eco-Friendly Superhydrophobic Composites with Thermostability, UV Resistance, and Coating Transparency. ACS Applied Materials & amp; Interfaces, 2021, 13, 61681-61692.	8.0	16
39	Efficient Degradation of Methylene Blue by the Nano TiO2-functionalized Graphene Oxide Nanocomposite Photocatalyst for Wastewater Treatment. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	14
40	Crystalline stability of cellulose III nanocrystals in the hydrothermal treatment and NaOH solution. Carbohydrate Polymers, 2020, 249, 116827.	10.2	13
41	Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships. Cellulose, 2021, 28, 7651-7662.	4.9	13
42	Improving the crossâ€linking degree of oxidized potato starch via addition of nanocrystalline cellulose. Starch/Staerke, 2017, 69, 1700042.	2.1	12
43	Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film. Cellulose, 2021, 28, 7749-7764.	4.9	12
44	Ultrahigh Adsorption of Toxic Substances from Cigarette Smoke Using Nanocellulose-SiO ₂ Hybrid Aerogels. ACS Applied Polymer Materials, 2022, 4, 1173-1182.	4.4	11
45	Sulfur-modified chitosan hydrogel as an adsorbent for removal of Hg(II) from effluents. Fibers and Polymers, 2017, 18, 1229-1234.	2.1	10
46	Investigation of [Emim][OAc] as a mild pretreatment solvent for enhancing the sulfonation efficiency of alkali lignin. RSC Advances, 2017, 7, 31009-31017.	3.6	9
47	Physical properties and thermal behavior of reconstituted tobacco sheet with precipitated calcium carbonate added in the coating process. Cellulose, 2017, 24, 2581-2590.	4.9	8
48	Precisely controlled preparation of uniform nanocrystalline cellulose via microfluidic technology. Journal of Industrial and Engineering Chemistry, 2022, 106, 77-85.	5.8	8
49	Endoglucanase recycling for disintegrating cellulosic fibers to fibrils. Carbohydrate Polymers, 2019, 223, 115052.	10.2	7
50	Efficient fractionation of cellulose nanofibers using spiral microchannel. Cellulose, 2020, 27, 4029-4041.	4.9	6
51	Distribution analysis of cellulose nanofibrils in paper handsheets: Dye-labeled Method. Carbohydrate Polymers, 2020, 239, 116226.	10.2	6
52	Effects of different <i>N</i> -acyl-serine lactone signaling molecules on the performance of anaerobic granular sludge. RSC Advances, 2022, 12, 5439-5446.	3.6	6
53	Characteristics of concentrated lignocellulosic nanofibril suspensions. Cellulose, 2022, 29, 147-158.	4.9	5
F 4	Stability of Purgara Kartawag da Vries Equation 2007		1

54 Stability of Burgers-Korteweg-de Vries Equation. , 2007, , .