
## Takashi Egawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554962/publications.pdf Version: 2024-02-01



TAKASHI ECANAA

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The 2018 GaN power electronics roadmap. Journal Physics D: Applied Physics, 2018, 51, 163001.                                                                                                                             | 2.8 | 843       |
| 2  | Thermal stability of GaN on (111) Si substrate. Journal of Crystal Growth, 1998, 189-190, 178-182.                                                                                                                        | 1.5 | 167       |
| 3  | Enhancement of breakdown voltage by AlN buffer layer thickness in AlGaNâ^GaN high-electron-mobility transistors on 4in. diameter silicon. Applied Physics Letters, 2005, 86, 123503.                                      | 3.3 | 108       |
| 4  | High-electron-mobility AlGaNâ^•AlNâ^•GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire<br>templates by metalorganic vapor phase epitaxy. Applied Physics Letters, 2004, 85, 1710-1712.                     | 3.3 | 89        |
| 5  | Uniform Growth of AlGaN/GaN High Electron Mobility Transistors on 200 mm Silicon (111) Substrate.<br>Applied Physics Express, 2013, 6, 026501.                                                                            | 2.4 | 89        |
| 6  | 1.4-kV Breakdown Voltage for AlGaN/GaN High-Electron-Mobility Transistors on Silicon Substrate. IEEE<br>Electron Device Letters, 2012, 33, 1375-1377.                                                                     | 3.9 | 88        |
| 7  | Improved dc characteristics of AlGaN/GaN high-electron-mobility transistors on AlN/sapphire templates. Applied Physics Letters, 2002, 81, 1131-1133.                                                                      | 3.3 | 65        |
| 8  | Metalorganic Chemical Vapor Deposition and Material Characterization of Lattice-Matched InAlN/GaN<br>Two-Dimensional Electron Gas Heterostructures. Applied Physics Express, 0, 1, 081102.                                | 2.4 | 43        |
| 9  | Influence of AlN nucleation layer on vertical breakdown characteristics for GaNâ€onâ€5i. Physica Status<br>Solidi (A) Applications and Materials Science, 2016, 213, 424-428.                                             | 1.8 | 39        |
| 10 | Microstructure variation in thick AlInN films grown on c-plane GaN on sapphire by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2019, 506, 40-44.                                                    | 1.5 | 33        |
| 11 | Novel fully vertical GaN p–n diode on Si substrate grown by metalorganic chemical vapor deposition.<br>Applied Physics Express, 2016, 9, 111005.                                                                          | 2.4 | 31        |
| 12 | DC Characteristics in High-Quality AlGaN/AlN/GaN High-Electron-Mobility Transistors Grown on<br>AlN/Sapphire Templates. Japanese Journal of Applied Physics, 2005, 44, 6490-6494.                                         | 1.5 | 29        |
| 13 | Influence of deep-pits on the device characteristics of metal-organic chemical vapor deposition<br>grown AlGaN/GaN high-electron mobility transistors on silicon substrate. Applied Physics Letters,<br>2011, 98, 252105. | 3.3 | 29        |
| 14 | Effect of Drift Layer on the Breakdown Voltage of Fully-Vertical GaN-on-Si p-n Diodes. IEEE Electron<br>Device Letters, 2017, 38, 1720-1723.                                                                              | 3.9 | 26        |
| 15 | Epitaxial growth and characterization of approximately 300-nm-thick AlInN films nearly<br>lattice-matched to <i>c</i> -plane GaN grown on sapphire. Applied Physics Express, 2018, 11, 051001.                            | 2.4 | 26        |
| 16 | Valence-Band Discontinuity at the AlN/Si Interface. Japanese Journal of Applied Physics, 2003, 42, 6413-6414.                                                                                                             | 1.5 | 23        |
| 17 | A 300 nm thick epitaxial AlInN film with a highly flat surface grown almost perfectly lattice-matched<br>to <i>c</i> -plane free-standing GaN substrate. Japanese Journal of Applied Physics, 2019, 58, SC1006.           | 1.5 | 19        |
| 18 | Modeling of the wafer bow in GaN-on-Si epiwafers employing GaN/AlN multilayer buffer structures.<br>Semiconductor Science and Technology, 2016, 31, 105016.                                                               | 2.0 | 18        |

Τακάshi Egawa

| #  | Article                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Al <sub>2</sub> O <sub>3</sub> /AlGaN Channel Normally-Off MOSFET on Silicon With High Breakdown<br>Voltage. IEEE Electron Device Letters, 2017, 38, 497-500.                                                                                                                                           | 3.9 | 16        |
| 20 | Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics, 2017, 129, 29-34.                                                                                                                                | 1.4 | 16        |
| 21 | Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN<br>metal-oxide-semiconductor high-electron-mobility transistors on Si substrate. Applied Physics Letters,<br>2015, 107, .                                                                                            | 3.3 | 14        |
| 22 | Device characteristics and performance estimation of nearly lattice-matched InAlN/AlGaN<br>heterostructure field-effect transistors. Journal of Vacuum Science and Technology<br>B:Nanotechnology and Microelectronics, 2016, 34, 050602.                                                               | 1.2 | 13        |
| 23 | Correlation between structural properties and nonradiative recombination behaviors of threading dislocations in freestanding GaN substrates grown by hydride vapor phase epitaxy. CrystEngComm, 2020, 22, 8299-8312.                                                                                    | 2.6 | 13        |
| 24 | Investigation of AlGaN/GaN high electron mobility transistors on Silicon (111) substrates employing multi-stacked strained layer superlattice structures. Superlattices and Microstructures, 2020, 147, 106709.                                                                                         | 3.1 | 13        |
| 25 | Impact of the AlN nucleation layer on the variation of the vertical-direction breakdown voltage of<br>AlGaN/GaN high-electron-mobility transistor structures on a Si substrate. Physica Status Solidi (A)<br>Applications and Materials Science, 2017, 214, 1600843.                                    | 1.8 | 11        |
| 26 | Effect of threading dislocation in an AlN nucleation layer and vertical leakage current in an<br>AlGaN/GaN high-electron mobility transistor structure on a silicon substrate. Semiconductor Science<br>and Technology, 2019, 34, 035015.                                                               | 2.0 | 9         |
| 27 | Growth of rough-surface p-GaN layers on InGaN/GaN multiple-quantum-well structures by<br>metalorganic chemical vapor deposition and their application to GaN-based solar cells. Materials<br>Research Express, 2017, 4, 085904.                                                                         | 1.6 | 8         |
| 28 | Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy. AlP Advances, 2016, 6, .                                                                                          | 1.3 | 7         |
| 29 | A Comparative Study of InGaN/GaN Multipleâ€Quantumâ€Well Solar Cells Grown on Sapphire and AlN<br>Template by Metalorganic Chemical Vapor Deposition. Physica Status Solidi (A) Applications and<br>Materials Science, 2018, 215, 1700323.                                                              | 1.8 | 6         |
| 30 | Analysis of carrier trapping and emission in AlGaN/GaN HEMT with bias ontrollable field plate. Physica<br>Status Solidi (A) Applications and Materials Science, 2017, 214, 1600840.                                                                                                                     | 1.8 | 5         |
| 31 | Enhancement of breakdown voltage for fully-vertical GaN-on-Si p-n diode by using strained layer superlattice as drift layer. Semiconductor Science and Technology, 2018, 33, 065017.                                                                                                                    | 2.0 | 5         |
| 32 | Reduced nonradiative recombination rates in <i>c</i> -plane Al0.83In0.17N films grown on a nearly<br>lattice-matched GaN substrate by metalorganic vapor phase epitaxy. Applied Physics Letters, 2021, 119, .                                                                                           | 3.3 | 5         |
| 33 | Mass production-ready characteristics of AlGaN/AlN/GaN high-electron-mobility transistor structures grown on 200 mm diameter silicon substrates using metal-organic chemical vapor deposition. Semiconductor Science and Technology, 2021, 36, 014004.                                                  | 2.0 | 5         |
| 34 | The role of p-GaN layer thickness for the evaluation of high-performance and ultrafast GaInN/GaN multiple quantum wells UV photodetectors. Optical Materials, 2022, 127, 112284.                                                                                                                        | 3.6 | 5         |
| 35 | Effect of the formation temperature of the AlN/Si interface on the vertical-direction breakdown voltages of AlGaN/GaN HEMTs on Si substrates. MRS Advances, 2016, 1, 3415-3420.                                                                                                                         | 0.9 | 4         |
| 36 | Metalorganic Chemical Vapor Deposition of over 150â€nmâ€Thick Quaternary AlGaInN Epitaxial Films near<br>Alloy Composition Latticeâ€Matching to GaN on Sapphire and Their Structural and Optical<br>Characterization. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900597. | 1.8 | 4         |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Improved epilayer qualities and electrical characteristics for GaInN multiple-quantum-well photovoltaic cells and their operation under artificial sunlight and monochromatic light illuminations. AIP Advances, 2021, 11, .                    | 1.3 | 4         |
| 38 | Improved performance of InGaN/GaN multilayer solar cells with an atomicâ€layerâ€deposited Al<br><sub>2</sub> O <sub>3</sub> passivation film. Electronics Letters, 2016, 52, 1246-1248.                                                         | 1.0 | 3         |
| 39 | Dynamic variation of carrier transport properties of recessed Au-free ohmic contacts to<br>InAlN/AlN/GaN on Si-wafer. Japanese Journal of Applied Physics, 2018, 57, 110302.                                                                    | 1.5 | 3         |
| 40 | Epitaxial regrowth and characterizations of vertical GaN transistors on silicon. Semiconductor Science and Technology, 2019, 34, 095013.                                                                                                        | 2.0 | 2         |
| 41 | Simulation Study on Novel GaNâ€Based nâ^'pâ^'n Heterojunction Bipolar Transistors with a Quaternary<br>AlGaInN Emitter and a Twoâ€Dimensionally Conductive Base. Physica Status Solidi (A) Applications and<br>Materials Science, 0, , 2100397. | 1.8 | 2         |