Wei Victor Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554664/publications.pdf

Version: 2024-02-01

471509 552781 39 748 17 26 citations h-index g-index papers 39 39 39 607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Numerical modeling of temperature profiles in hardening belitic calcium sulfoaluminate cement-based mortars for permafrost region applications. Journal of Sustainable Cement-Based Materials, 2023, 12, 331-344.	3.1	3
2	Hysteresis loss of ultra-large off-the-road tire rubber compounds based on operating conditions at mine sites. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236, 439-450.	1.9	7
3	Effects of sodium gluconate on hydration reaction, setting, workability, and strength development of calcium sulfoaluminate belite cement mixtures. Journal of Sustainable Cement-Based Materials, 2022, 11, 273-285.	3.1	7
4	Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation. Energy, 2022, 238, 121676.	8.8	7
5	Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger. Renewable Energy, 2021, 165, 334-349.	8.9	25
6	Numerical study of coal dust behaviors and experimental investigation on coal dust suppression efficiency of surfactant solution by using wind tunnel tests. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 2173-2188.	2.3	14
7	Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures. Construction and Building Materials, 2021, 274, 122082.	7.2	20
8	Considering buried depth for vertical borehole heat exchangers in a borehole field with groundwater flow—An extended solution. Energy and Buildings, 2021, 235, 110722.	6.7	3
9	Effects of calcium aluminate cement on the acid resistance of metakaolin-based geopolymer. Advances in Cement Research, 2021, 33, 423-435.	1.6	7
10	Effects of cellulose nanocrystals on the acid resistance of cementitious composites. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1745-1758.	4.9	6
11	Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation. Renewable Energy, 2021, 176, 115-134.	8.9	25
12	Methods to evaluate resistance of cement-based materials against microbially induced corrosion: A state-of-the-art review. Cement and Concrete Composites, 2021, 123, 104208.	10.7	7
13	Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: Its effects on setting, workability, and strength development. Frontiers of Structural and Civil Engineering, 2021, 15, 1249-1260.	2.9	9
14	Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta. Renewable Energy, 2020, 148, 1110-1123.	8.9	88
15	Performance evaluation of nano-silica and silica fume on enhancing acid resistance of cement-based composites for underground structures. Journal of Central South University, 2020, 27, 3821-3838.	3.0	8
16	Considering buried depth in the moving finite line source model for vertical borehole heat exchangers—A new solution. Energy and Buildings, 2020, 214, 109859.	6.7	18
17	Forecasting the deterioration of cement-based mixtures under sulfuric acid attack using support vector regression based on Bayesian optimization. SN Applied Sciences, 2020, 2, 1.	2.9	9
18	Effects of initial particle gradation and rock content on crushing behaviors of weathered phyllite fills – A case of eastern Ankang section of Shiyan–Tianshui highway, China. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 269-278.	8.1	13

#	Article	IF	CITATIONS
19	The performance of calcium sulfoaluminate cement for preventing early-age frost damage. Construction and Building Materials, 2020, 254, 119322.	7.2	20
20	Physical investigation on the behaviours of voussoir beams. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 516-527.	8.1	7
21	Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 2020, 243, 118201.	7.2	27
22	Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures. Construction and Building Materials, 2019, 224, 493-503.	7.2	53
23	Experimental study on improving performance of dust-suppression foam by magnetization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 370-377.	4.7	19
24	Effect of polymer stabilizers' viscosity on red sand structure strength and dust pollution resistance. Powder Technology, 2019, 352, 117-125.	4.2	19
25	Effects of pozzolans on acid resistance of shotcrete for sewer tunnel rehabilitation. Journal of Sustainable Cement-Based Materials, 2019, 8, 55-77.	3.1	7
26	Strata movement and shield pressure analysis at Tongxin longwall top coal caving working face with extra-thick coal seam. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	5
27	Effect of Strata Conditions on Shield Pressure and Surface Subsidence at a Longwall Top Coal Caving Working Face. Rock Mechanics and Rock Engineering, 2019, 52, 1523-1537.	5.4	40
28	Comparison of chemical suppressants under different atmospheric temperatures for the control of fugitive dust emission on mine hauls roads. Atmospheric Pollution Research, 2018, 9, 561-568.	3.8	38
29	Spontaneous combustion influenced by surface methane drainage and its prediction by rescaled range analysis. International Journal of Mining Science and Technology, 2018, 28, 215-221.	10.3	34
30	Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10, 212-221.	8.1	26
31	The Sustainability of Concrete in Sewer Tunnelâ€"A Narrative Review of Acid Corrosion in the City of Edmonton, Canada. Sustainability, 2018, 10, 517.	3.2	47
32	A methane emission control strategy in the initial mining range at a spontaneous combustion-prone longwall face: A case study in coal 15, Shigang Mine, China. Journal of Natural Gas Science and Engineering, 2017, 38, 504-515.	4.4	19
33	Voussoir beam model for lower strong roof strata movement in longwall mining – Case study. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 1171-1176.	8.1	22
34	Cylindrical models of heat flow and thermo-elastic stresses in underground tunnels. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2139-2159.	2.8	12
35	Analytical and numerical modeling for the effects of thermal insulation in underground tunnels. International Journal of Mining Science and Technology, 2016, 26, 267-276.	10.3	13
36	Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cement and Concrete Composites, 2014, 53, 44-51.	10.7	46

WEI VICTOR LIU

#	Article	IF	CITATIONS
37	Simulation of the Effects of Thermo Insulating Shotcrete on the Energy Consumption of Ventilation and Cooling Systems at Deep Underground Mines. , 2014, , 37-42.		2
38	Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation. International Journal of Mining and Mineral Engineering, 2011, 3, 55.	0.3	13
39	A novel phenomenological model for predicting hysteresis loss of rubber compounds obtained from ultra-large off-the-road tires. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702110724.	1.9	3