
Maria Marlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554234/publications.pdf Version: 2024-02-01

Μλαιλ Μλαιουν

#	Article	IF	CITATIONS
1	Detection of Label-Free Drugs within Brain Tissue Using Orbitrap Secondary Ion Mass Spectrometry as a Complement to Neuro-Oncological Drug Delivery. Pharmaceutics, 2022, 14, 571.	2.0	3
2	Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration. International Journal of Pharmaceutics, 2022, 622, 121828.	2.6	7
3	Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition. Chemical Science, 2021, 12, 14260-14269.	3.7	7
4	Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. Journal of Controlled Release, 2020, 317, 118-129.	4.8	8
5	Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery. Advanced Drug Delivery Reviews, 2020, 153, 195-215.	6.6	102
6	Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. International Journal of Pharmaceutics, 2020, 589, 119808.	2.6	29
7	Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. Journal of Controlled Release, 2020, 328, 917-931.	4.8	25
8	Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 108-120.	2.0	39
9	Intradermal Delivery of an Immunomodulator for Basal Cell Carcinoma; Expanding the Mechanistic Insight into Solid Microneedle-Enhanced Delivery of Hydrophobic Molecules. Molecular Pharmaceutics, 2020, 17, 2925-2937.	2.3	25
10	Characterisation of mechanical insertion of commercial microneedles. Journal of Drug Delivery Science and Technology, 2020, 58, 101766.	1.4	9
11	Role of selfâ€assembly conditions and amphiphilic balance on nanoparticle formation of PEGâ€₽DLLA copolymers in aqueous environments. Journal of Polymer Science Part A, 2019, 57, 1801-1810.	2.5	20
12	A mechanically-engineered spray to increase brain penetration of chemotherapeutic nanoparticles in the treatment of high-grade gliomas. Neuro-Oncology, 2019, 21, iv1-iv1.	0.6	0
13	Expanding the applications of microneedles in dermatology. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 140, 121-140.	2.0	69
14	A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. International Journal of Pharmaceutics, 2019, 565, 151-161.	2.6	20
15	Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 33-43.	2.0	34
16	Low Molecular Weight Nucleoside Gelators: A Platform for Protein Aggregation Inhibition. Molecular Pharmaceutics, 2019, 16, 462-467.	2.3	3
17	Self-Assembling Benzothiazole-Based Gelators: A Mechanistic Understanding of in Vitro Bioactivation and Gelation. Molecular Pharmaceutics, 2018, 15, 1578-1586.	2.3	3
18	Nucleosideâ€Based Selfâ€Assembling Drugs for Localized Drug Delivery. ChemMedChem, 2018, 13, 1098-1101.	1.6	5

MARIA MARLOW

#	Article	IF	CITATIONS
19	Hydrophobicity of surface-immobilised molecules influences architectures formed <i>via</i> interfacial self-assembly of nucleoside-based gelators. Soft Matter, 2018, 14, 9851-9855.	1.2	7
20	Supramolecular Nucleoside-Based Gel: Molecular Dynamics Simulation and Characterization of Its Nanoarchitecture and Self-Assembly Mechanism. Langmuir, 2018, 34, 6912-6921.	1.6	44
21	Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. Langmuir, 2018, 34, 15109-15125.	1.6	41
22	Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates. Applied Spectroscopy, 2017, 71, 2595-2607.	1.2	12
23	The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment. Nanotechnology, 2016, 27, 255102.	1.3	3
24	Developing a self-healing supramolecular nucleoside hydrogel. Soft Matter, 2016, 12, 8950-8957.	1.2	21
25	Linking <i>in Vitro</i> Lipolysis and Microsomal Metabolism for the Quantitative Prediction of Oral Bioavailability of BCS II Drugs Administered in Lipidic Formulations. Molecular Pharmaceutics, 2016, 13, 3526-3540.	2.3	14
26	Surface-directed modulation of supramolecular gel properties. Chemical Communications, 2016, 52, 4298-4300.	2.2	21
27	Smart Lipid-Based Drug Delivery Systems. , 2016, , 309-371.		2
28	Chain length affects pancreatic lipase activity and the extent and pH–time profile of triglyceride lipolysis. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 353-362.	2.0	56
29	Linifanib – a multi-targeted receptor tyrosine kinase inhibitor and a low molecular weight gelator. Chemical Communications, 2015, 51, 6384-6387.	2.2	12
30	Antitumour benzothiazoles. Part 32: DNA adducts and double strand breaks correlate with activity; synthesis of 5F203 hydrogels for local delivery. Bioorganic and Medicinal Chemistry, 2015, 23, 6891-6899.	1.4	39
31	Gelation properties of self-assembling N-acyl modified cytidine derivatives. Journal of Materials Chemistry B, 2014, 2, 8412-8417.	2.9	22
32	Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter, 2014, 10, 237-256.	1.2	317
33	A quantitative assessment of inhaled drug particle–pulmonary surfactant interaction by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2009, 73, 97-102.	2.5	21
34	Surface Modification of Microspheres with Steric Stabilizing and Cationic Polymers for Gene Delivery. Langmuir, 2008, 24, 7138-7146.	1.6	30
35	Macroporous surface modified microparticles. Soft Matter, 2008, 4, 1597.	1.2	9
36	Characterization of Drug Particle Surface Energetics and Young's Modulus by Atomic Force Microscopy and Inverse Gas Chromatography. Pharmaceutical Research, 2005, 22, 1158-1166.	1.7	70

MARIA MARLOW

#	Article	IF	CITATIONS
37	Fluorinated ionic surfactant microemulsions in hydrofluorocarbon 134a (HFC 134a). Journal of Colloid and Interface Science, 2003, 258, 354-362.	5.0	18
38	Formation of fluorinated nonionic surfactant microemulsions in hydrofluorocarbon 134a (HFC 134a). Journal of Colloid and Interface Science, 2003, 258, 345-353.	5.0	30
39	An in-vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth. Clinical Materials, 1994, 17, 85-91.	0.5	50
40	In vivo evaluation of protein adsorption to sterically stabilised colloidal carriers. Journal of Biomedical Materials Research Part B, 1993, 27, 861-866.	3.0	15
41	Use of polyphosphazenes for skeletal tissue regeneration. Journal of Biomedical Materials Research Part B, 1993, 27, 963-973.	3.0	167
42	Microspheres for targeting drugs to specific body sites. Journal of Controlled Release, 1993, 24, 157-163.	4.8	83