Alexandre Surget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554197/publications.pdf

Version: 2024-02-01

45 papers

7,106 citations

304743 22 h-index 32 g-index

48 all docs

48 docs citations

48 times ranked 7372 citing authors

#	Article	IF	CITATIONS
1	Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science, 2003, 301, 805-809.	12.6	3,912
2	Neuroinflammation and depression: A review. European Journal of Neuroscience, 2021, 53, 151-171.	2.6	489
3	Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biological Psychiatry, 2008, 64, 293-301.	1.3	482
4	Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 2011, 16, 1177-1188.	7.9	406
5	Animal models of major depression: drawbacks and challenges. Journal of Neural Transmission, 2019, 126, 1383-1408.	2.8	252
6	A Molecular Signature of Depression in the Amygdala. American Journal of Psychiatry, 2009, 166, 1011-1024.	7.2	177
7	Corticolimbic Transcriptome Changes are State-Dependent and Region-Specific in a Rodent Model of Depression and of Antidepressant Reversal. Neuropsychopharmacology, 2009, 34, 1363-1380.	5.4	173
8	Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology, 2012, 63, 374-384.	4.1	142
9	Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research, 2008, 193, 140-143.	2.2	123
10	Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioural Brain Research, 2009, 202, 245-251.	2.2	99
11	Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology, 2008, 33, 1357-1368.	2.7	98
12	Peripheral and cerebral metabolic abnormalities of the tryptophan–kynurenine pathway in a murine model of major depression. Behavioural Brain Research, 2010, 210, 84-91.	2.2	95
13	Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus, 2013, 23, 797-811.	1.9	80
14	Involvement of vasopressin in affective disorders. European Journal of Pharmacology, 2008, 583, 340-349.	3.5	67
15	Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: Focus on individual differences. Pharmacology Biochemistry and Behavior, 2011, 98, 161-168.	2.9	56
16	Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology, 2017, 126, 179-189.	4.1	55
17	Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?. Biochemical Pharmacology, 2017, 141, 86-99.	4.4	55
18	Neuropeptides in Psychiatric Diseases: An Overview with a Particular Focus on Depression and Anxiety Disorders. CNS and Neurological Disorders - Drug Targets, 2006, 5, 135-145.	1.4	46

#	Article	lF	Citations
19	Adult hippocampal neurogenesis and antidepressants effects. Current Opinion in Pharmacology, 2020, 50, 88-95.	3.5	43
20	Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Molecular Psychiatry, 2022, 27, 403-421.	7.9	35
21	Altered aortic vascular reactivity in the unpredictable chronic mild stress model of depression in mice. Physiology and Behavior, 2011, 103, 540-546.	2.1	34
22	Do antidepressants promote neurogenesis in adult hippocampus? A systematic review and meta-analysis on naive rodents., 2020, 210, 107515.		34
23	Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology, 2021, 124, 105097.	2.7	32
24	Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression. Psychoneuroendocrinology, 2016, 67, 113-123.	2.7	22
25	Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells, 2021, 10, 972.	4.1	19
26	Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse. Brain, Behavior, and Immunity, 2021, 94, 159-174.	4.1	17
27	Olfactory markers for depression: Differences between bipolar and unipolar patients. PLoS ONE, 2020, 15, e0237565.	2.5	16
28	Large-scale estimates of cellular origins of mRNAs: Enhancing the yield of transcriptome analyses. Journal of Neuroscience Methods, 2008, 167, 198-206.	2.5	13
29	Benzodiazepine use and brain amyloid load in nondemented older individuals: a florbetapir PET study in the Multidomain Alzheimer Preventive Trial cohort. Neurobiology of Aging, 2019, 84, 61-69.	3.1	12
30	Benzodiazepine use and neuroimaging markers of Alzheimer's disease in nondemented older individuals: an MRI and 18F Florbetapir PET study in the MEMENTO cohort. Neuropsychopharmacology, 2022, 47, 1114-1120.	5.4	8
31	Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice. Neuropharmacology, 2016, 110, 37-47.	4.1	5
32	CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics, 2021, 13, 2114.	4.5	1
33	A74 HIPPOCAMPAL NEUROGENESIS CONTRIBUTES TO THE EFFICACY OF IMIPRAMINE AND CRF1 ANTAGONIST (SSR125543A) FOLLOWING A CHRONIC UNPREDICTABLE STRESS PROCEDURE IN MICE. Behavioural Pharmacology, 2005, 16, S46.	1.7	0
34	A68 DENSITY AND AFFINITY OF 5-HT TRANSPORTER IN A MOUSE MODEL OF DEPRESSION. Behavioural Pharmacology, 2005, 16, S44.	1.7	0
35	S.07.06 Antidepressant treatment enhances the capacity for disambiguation in the hippocampus. European Neuropsychopharmacology, 2014, 24, S119-S120.	0.7	0
36	P.214 Is adult hippocampal neurogenesis sufficient for antidepressant effects: results from a mouse model of depression. European Neuropsychopharmacology, 2020, 31, S29.	0.7	0

#	Article	IF	CITATIONS
37	Optogenetic and chemogenetic technologies for advanced functional investigations of the neural correlates of emotions., 2019,, 97-110.		O
38	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		O
39	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		O
40	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		0
41	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		O
42	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		0
43	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		O
44	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		0
45	Olfactory markers for depression: Differences between bipolar and unipolar patients., 2020, 15, e0237565.		O