
Mohammad Ali Ghorbani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal connections in reconstructed monthly rainfall time series in different rainfall regimes of Turkey. Arabian Journal of Geosciences, 2022, 15, .	1.3	2
2	Energy Dissipation in Rough Chute: Experimental Approach Versus Artificial Intelligence Modeling. Springer Transactions in Civil and Environmental Engineering, 2021, , 227-249.	0.4	1
3	Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH Journal of Hydraulic Engineering, 2020, 26, 421-429.	2.1	30
4	Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 939-953.	3.1	24
5	Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia. Soft Computing, 2020, 24, 12079-12090.	3.6	39
6	Deep learning under H2O framework: A novel approach for quantitative analysis of discharge coefficient in sluice gates. Journal of Hydroinformatics, 2020, 22, 1603-1619.	2.4	26
7	Can Decomposition Approaches Always Enhance Soft Computing Models? Predicting the Dissolved Oxygen Concentration in the St. Johns River, Florida. Applied Sciences (Switzerland), 2019, 9, 2534.	2.5	53
8	Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 573-584.	1.4	13
9	Evaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrological Sciences Journal, 2019, 64, 1843-1856.	2.6	39
10	Dew Point Temperature Estimation: Application of Artificial Intelligence Model Integrated with Nature-Inspired Optimization Algorithms. Water (Switzerland), 2019, 11, 742.	2.7	70
11	Design and implementation of a hybrid MLP-FFA model for soil salinity prediction. Environmental Earth Sciences, 2019, 78, 1.	2.7	14
12	Evaluation of daily solar radiation flux using soft computing approaches based on different meteorological information: peninsula vs continent. Theoretical and Applied Climatology, 2019, 137, 693-712.	2.8	32
13	Design and implementation of a hybrid MLP-GSA model with multi-layer perceptron-gravitational search algorithm for monthly lake water level forecasting. Stochastic Environmental Research and Risk Assessment, 2019, 33, 125-147.	4.0	32
14	Artificial intelligence-based fast and efficient hybrid approach for spatial modelling of soil electrical conductivity. Soil and Tillage Research, 2019, 186, 152-164.	5.6	22
15	Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. Journal of Hydrology, 2018, 562, 455-467.	5.4	48
16	A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction. Soft Computing, 2018, 22, 2205-2215.	3.6	30
17	Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1683-1697.	4.0	90
18	Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data. Renewable Energy, 2018, 116, 309-323.	8.9	115

#	Article	IF	CITATIONS
19	Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theoretical and Applied Climatology, 2018, 133, 1119-1131.	2.8	134
20	Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 724-737.	3.1	102
21	Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Information Processing in Agriculture, 2018, 5, 465-476.	4.1	45
22	Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows. Water Resources Management, 2018, 32, 4201-4215.	3.9	60
23	What Is the Potential of Integrating Phase Space Reconstruction with SVM-FFA Data-Intelligence Model? Application of Rainfall Forecasting over Regional Scale. Water Resources Management, 2018, 32, 3935-3959.	3.9	32
24	Novel genetic-based negative correlation learning for estimating soil temperature. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 506-516.	3.1	34
25	Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 2018, 310, 178-190.	5.1	140
26	Soil Cation Exchange Capacity Predicted by Learning From Multiple Modelling. Advances in Computational Intelligence and Robotics Book Series, 2018, , 465-480.	0.4	4
27	Probability distribution functions for unit hydrographs with optimization using genetic algorithm. Applied Water Science, 2017, 7, 663-676.	5.6	14
28	Use of artificial neural networks for electrical conductivity modeling in Asi River. Applied Water Science, 2017, 7, 1761-1772.	5.6	14
29	Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Archives of Agronomy and Soil Science, 2017, 63, 151-160.	2.6	46
30	Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and Tillage Research, 2017, 172, 32-38.	5.6	106
31	Forced Hydraulic Jumps Described by Classic Hydraulic Equations Reproducing Cusp Catastrophe Features. Arabian Journal for Science and Engineering, 2017, 42, 4169-4179.	3.0	7
32	Comparative study of different wavelets for developing parsimonious Volterra model for rainfall-runoff simulation. Water Resources, 2017, 44, 568-578.	0.9	5
33	Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River. Environmental Earth Sciences, 2017, 76, 1.	2.7	94
34	Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences, 2016, 75, 1.	2.7	43
35	Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. Journal of Hydrology, 2016, 540, 340-354.	5.4	32
36	A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 2016, 75, 1.	2.7	123

#	Article	IF	CITATIONS
37	Short-term wind speed predictions with machine learning techniques. Meteorology and Atmospheric Physics, 2016, 128, 57-72.	2.0	33
38	Comparative analysis of support vector machine and artificial neural network models for soil cation exchange capacity prediction. International Journal of Environmental Science and Technology, 2016, 13, 87-96.	3.5	29
39	Estimation of dissolved oxygen using data-driven techniques in the Tai Po River, Hong Kong. Environmental Earth Sciences, 2015, 74, 4065-4073.	2.7	41
40	Comparison of different methods for developing a stage–discharge curve of the Kizilirmak River. Journal of Flood Risk Management, 2015, 8, 71-86.	3.3	23
41	Inter-comparison of time series models of lake levels predicted by several modeling strategies. Journal of Hydrology, 2014, 511, 530-545.	5.4	36
42	Modelling Energy Dissipation Over Stepped-gabion Weirs by Artificial Intelligence. Water Resources Management, 2014, 28, 1807-1821.	3.9	34
43	Comparison of Volterra Model and Artificial Neural Networks for Rainfall–Runoff Simulation. Natural Resources Research, 2014, 23, 341-354.	4.7	11
44	Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations. Neural Computing and Applications, 2013, 23, 2241-2252.	5.6	16
45	Chaos and reproduction in sea level. Applied Mathematical Modelling, 2013, 37, 3687-3697.	4.2	19
46	Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theoretical and Applied Climatology, 2013, 114, 107-114.	2.8	66
47	Investigating chaos in river stage and discharge time series. Journal of Hydrology, 2012, 414-415, 108-117.	5.4	87
48	Comparison of three artificial intelligence techniques for discharge routing. Journal of Hydrology, 2011, 403, 201-212.	5.4	76
49	Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective. Ocean Dynamics, 2011, 61, 1797-1807.	2.2	23
50	Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computers and Geosciences, 2010, 36, 620-627.	4.2	128
51	A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods. Applied Mathematical Modelling, 2010, 34, 4050-4057.	4.2	43
52	Study of discontinuities in hydrological data using catastrophe theory. Hydrological Sciences Journal, 2010, 55, 1137-1151.	2.6	22