Yibing Qyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2553620/publications.pdf Version: 2024-02-01

YIRING OVANG

#	Article	IF	CITATIONS
1	The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research and Therapy, 2019, 10, 87.	5.5	117
2	Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials, 2016, 102, 120-129.	11.4	111
3	Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell, 2020, 26, 251-261.e8.	11.1	96
4	Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials, 2015, 53, 621-633.	11.4	94
5	Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports, 2016, 7, 19-28.	4.8	75
6	Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Scientific Reports, 2016, 6, 32068.	3.3	74
7	Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research, 2015, 117, 121-128.	4.5	64
8	Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochemical Journal, 2015, 465, 185-194.	3.7	53
9	Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioactive Materials, 2019, 4, 142-150.	15.6	53
10	Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. Journal of Experimental Medicine, 2016, 213, 451-463.	8.5	46
11	Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. JACC Basic To Translational Science, 2019, 4, 495-505.	4.1	46
12	Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials, 2017, 147, 116-132.	11.4	38
13	Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein–Induced Retinal Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 657-663.	2.4	34
14	mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1657-1666.	2.4	26
15	Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia, 2020, 102, 220-230.	8.3	25
16	Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight, 2019, 4, .	5.0	25
17	Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia, 2021, 119, 184-196. 	8.3	22
18	Functional Cardiomyocytes Derived from Isl1 Cardiac Progenitors via Bmp4 Stimulation. PLoS ONE, 2014, 9, e110752.	2.5	21

YIBING QYANG

#	Article	IF	CITATIONS
19	Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy. Circulation, 2022, 145, 1238-1253.	1.6	20
20	Engineered Microvasculature in PDMS Networks Using Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Cell Transplantation, 2017, 26, 1365-1379.	2.5	17
21	Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. Journal of General Physiology, 2021, 153, .	1.9	15
22	Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1516-H1524.	3.2	13
23	Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells, 2021, 10, 792.	4.1	12
24	Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia, 2021, 119, 155-168.	8.3	11
25	An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials, 2021, 275, 120911.	11.4	9
26	Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Current Cardiology Reports, 2017, 19, 34.	2.9	8
27	Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues. Circulation Research, 2021, 128, 281-283.	4.5	8
28	Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 330-339.	2.0	6
29	Readily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells. Circulation Research, 2022, 130, 925-927.	4.5	5
30	Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal of Molecular and Cellular Cardiology, 2022, 163, 167-174.	1.9	3
31	Regeneration of a heart cell. Yale Journal of Biology and Medicine, 2009, 82, 117-9.	0.2	2
32	PECUU-ECM Patches. JACC Basic To Translational Science, 2021, 6, 464-466.	4.1	1
33	Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods in Molecular Biology, 2022, 2375, 21-34.	0.9	1
34	Engineered microvasculature in PDMS networks using endothelial cells derived from human induced pluripotent stem cells. Cell Transplantation, 2017, , .	2.5	0