

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2553524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371, 830-834.	6.0	546
2	Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe ₂ . Science, 2021, 371, 722-727.	6.0	306
3	High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science, 2022, 377, 208-213.	6.0	233
4	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	7.8	159
5	Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2192-2200.	8.8	157
6	Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nature Communications, 2021, 12, 3234.	5.8	105
7	High Thermoelectric Performance Achieved in GeTe–Bi ₂ Te ₃ Pseudoâ€Binary via Van der Waals Gapâ€Induced Hierarchical Ferroelectric Domain Structure. Advanced Functional Materials, 2019, 29, 1806613.	7.8	101
8	Energetics of Nanoparticle Exsolution from Perovskite Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3772-3778.	2.1	65
9	Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Research, 2019, 149, 190-201.	5.3	64
10	Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Small Molecule. ACS Energy Letters, 2021, 6, 4209-4219.	8.8	63
11	Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments. Water Research, 2020, 181, 115923.	5.3	56
12	Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 5135-5142.	15.6	53
13	Realizing Reduced Imperfections via Quantum Dots Interdiffusion in High Efficiency Perovskite Solar Cells. Advanced Materials, 2020, 32, e2003296.	11.1	50
14	Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11337-11343.	3.3	42
15	Intrinsic Conductance of Domain Walls in BiFeO ₃ . Advanced Materials, 2019, 31, e1902099.	11.1	39
16	Modifying Li@Mn ₆ Superstructure Units by Al Substitution to Enhance the Longâ€Cycle Performance of Coâ€Free Liâ€Rich Cathode. Advanced Energy Materials, 2021, 11, 2101962.	10.2	39
17	Chemical Bath Deposition of Coâ€Doped TiO ₂ Electron Transport Layer for Hysteresis‣uppressed Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900176.	3.1	36
18	Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides. Angewandte Chemie - International Edition, 2020, 59, 20348-20352.	7.2	36

Lin Xie

#	Article	IF	CITATIONS
19	Realizing Improved Thermoelectric Performance in Bil ₃ -Doped Sb ₂ Te ₃ (GeTe) ₁₇ via Introducing Dual Vacancy Defects. Chemistry of Materials, 2020, 32, 1693-1701.	3.2	36
20	Efficient and Reproducible CH ₃ NH ₃ PbI ₃ Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive. ACS Applied Materials & Interfaces, 2018, 10, 9390-9397.	4.0	31
21	Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions. Environmental Science & Technology, 2019, 53, 4173-4184.	4.6	31
22	Deterministic Switching of Ferroelectric Bubble Nanodomains. Advanced Functional Materials, 2019, 29, 1808573.	7.8	30
23	Coherent Sb/CuTe Core/Shell Nanostructure with Large Strain Contrast Boosting the Thermoelectric Performance of nâ€Type PbTe. Advanced Functional Materials, 2021, 31, 2007340.	7.8	30
24	Ternary solvent for CH ₃ NH ₃ PbI ₃ perovskite films with uniform domain size. Physical Chemistry Chemical Physics, 2017, 19, 1143-1150.	1.3	29
25	SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons, 2021, 8, 1847-1865.	6.4	29
26	A highly asymmetric interfacial superstructure in WC: expanding the classic grain boundary segregation and new complexion theories. Materials Horizons, 2020, 7, 173-180.	6.4	26
27	Step-Up Thermoelectric Performance Realized in Bi ₂ Te ₃ Alloyed GeTe via Carrier Concentration and Microstructure Modulations. ACS Applied Energy Materials, 2019, 2, 1616-1622.	2.5	25
28	Interfacial superstructures and chemical bonding transitions at metal-ceramic interfaces. Science Advances, 2021, 7, .	4.7	24
29	Multilayer Ion Load and Diffusion on TMD/MXene Heterostructure Anodes for Alkali-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7699-7709.	2.5	22
30	Electric Polarization Switching on an Atomically Thin Metallic Oxide. Nano Letters, 2021, 21, 144-150.	4.5	19
31	Direct Atomicâ€5cale Structure and Electric Field Imaging of Triazineâ€Based Crystalline Carbon Nitride. Advanced Materials, 2021, 33, e2106359.	11.1	19
32	Organic Photovoltaics Utilizing a Polymer Nanofiber/Fullerene Interdigitated Bilayer Prepared by Sequential Solution Deposition. Journal of Physical Chemistry C, 2016, 120, 12933-12940.	1.5	18
33	Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution. Journal of Hazardous Materials, 2020, 383, 121145.	6.5	18
34	Control of Epitaxial BaFe ₂ As ₂ Atomic Configurations with Substrate Surface Terminations. Nano Letters, 2018, 18, 6347-6352.	4.5	16
35	Direct atomic-scale observation of the Ag ⁺ diffusion structure in the quasi-2D "liquid-like―state of superionic thermoelectric AgCrSe ₂ . Journal of Materials Chemistry C, 2019, 7, 9263-9269.	2.7	16
36	Watershed-scale distributions of heavy metals in the hyporheic zones of a heavily polluted Maozhou River watershed, southern China. Chemosphere, 2020, 239, 124773.	4.2	15

Lin Xie

#	Article	IF	CITATIONS
37	Superconductivity in undoped BaFe ₂ As ₂ by tetrahedral geometry design. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21170-21174.	3.3	13
38	Effective protection of sequential solution-processed polymer/fullerene bilayer solar cell against charge recombination and degradation. Organic Electronics, 2015, 25, 212-218.	1.4	12
39	Enhanced Bidimensionalityâ€Driven Ultrahigh Laserâ€Induced Voltages in Highâ€∢i>T _c Superconducting Epitaxial Films. Advanced Electronic Materials, 2018, 4, 1800116.	2.6	11
40	Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators. Scientific Reports, 2021, 11, 7770.	1.6	10
41	Porous Thermoelectric Zintl: YbCd ₂ Sb ₂ . ACS Applied Energy Materials, 2021, 4, 913-920.	2.5	9
42	Directing Gold Nanoparticles into Free‣tanding Honeycomb‣ike Ordered Mesoporous Superstructures. Small, 2019, 15, e1901304.	5.2	8
43	GaP–ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 3336-3342.	1.5	7
44	Enhanced thermoelectric properties in chimney ladder structured Mn(BxSi1-x)1.75 due to the dual lattice occupation of boron. Applied Physics Letters, 2019, 115, 123902.	1.5	5
45	Plasmonic evolution of atomically size-selected Au clusters by electron energy loss spectrum. National Science Review, 2020, 8, nwaa282.	4.6	5
46	Single-element amorphous palladium nanoparticles formed via phase separation. Nano Research, 2022, 15, 5575-5580.	5.8	5
47	Significantly Enhanced Electrochemical Redox for Highâ€Performance Electrochemical Capacitor via Active Ionâ€Tunnel Oriented BaCoF ₄ Electrodes. Advanced Energy Materials, 2021, 11, 2003734.	10.2	4
48	ZnS-GaP Solid Solution Thin Films with Enhanced Visible-Light Photocurrent. ACS Applied Energy Materials, 0, , .	2.5	4
49	Feâ€N Catalysts: Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970332.	7.8	3
50	Rational design of D–π–D hole-transporting materials for efficient perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7824-7832.	3.2	3
51	Colossal photovoltages in strain-driven crystal field transition and symmetry breaking of superconducting epitaxial systems. Physical Review Materials, 2019, 3, .	0.9	1
52	Preparation and magnetic properties of cylindrical permalloy nanowire arrays. MRS Communications, 0, , 1.	0.8	1
53	Superstructures: Directing Gold Nanoparticles into Freeâ€6tanding Honeycombâ€Like Ordered Mesoporous Superstructures (Small 31/2019). Small, 2019, 15, 1970165.	5.2	0
54	Surface Crystallization of Amorphous Palladium Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 1107-1112.	1.5	0