Scott H Kable

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2553312/scott-h-kable-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

136 3,474 51 32 h-index g-index citations papers 3,690 4.98 159 5.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
136	An assessment of the tropospherically accessible photo-initiated ground state chemistry of organic carbonyls. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 929-949	6.8	O
135	The dynamics of CO production from the photolysis of acetone across the whole S <- S absorption spectrum: Roaming and triple fragmentation pathways <i>Journal of Chemical Physics</i> , 2022 , 156, 094303	3.9	
134	Photodissociation dynamics of CFCHO: C-C bond cleavage. <i>Journal of Chemical Physics</i> , 2021 , 155, 20430) 3 .9	2
133	Disentangling the H2E, F(1g+) (v?=0d8)<-X(1g+)(v?=3g)(2+1) REMPI spectrum via 2D velocity-mapped imaging. <i>Molecular Physics</i> , 2021 , 119, e1836412	1.7	1
132	Photodissociation of dicarbon: How nature breaks an unusual multiple bond <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
131	Rotational resonances in the HCO roaming reaction are revealed by detailed correlations. <i>Science</i> , 2020 , 369, 1592-1596	33.3	16
130	Dynamics and quantum yields of H + CHCO as a primary photolysis channel in CHCHO. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 14284-14295	3.6	13
129	Quantum-Induced Symmetry Breaking in the Deuterated Dihydroanthracenyl Radical. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 6711-6719	2.8	3
128	Structural Effects on the Norrish Type I Bond Cleavage of Tropospherically Important Carbonyls. Journal of Physical Chemistry A, 2019 , 123, 10381-10396	2.8	5
127	Multihydroxy-Anthraquinone Derivatives as Free Radical and Cationic Photoinitiators of Various Photopolymerizations under Green LED. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800172	4.8	24
126	Interconversion of Methyltropyl and Xylyl Radicals: A Pathway Unavailable to the Benzyl-Tropyl Rearrangement. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 1261-1269	2.8	10
125	Photodissociation dynamics of propanal and isobutanal: The Norrish Type I pathway. <i>Journal of Chemical Physics</i> , 2018 , 148, 164308	3.9	6
124	Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere. <i>Nature Communications</i> , 2018 , 9, 2584	17.4	23
123	Aliphatic hydrocarbon content of interstellar dust. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 4336-4344	4.3	10
122	Jet-Cooled Spectroscopy of ortho-Hydroxycyclohexadienyl Radicals. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 8886-8897	2.8	3
121	Zero-point energy conservation in classical trajectory simulations: Application to HCO. <i>Journal of Chemical Physics</i> , 2018 , 148, 194113	3.9	6
120	Photodissociation of acetone from 266 to 312 nm: Dynamics of CH + CHCO channels on the S and T states. <i>Journal of Chemical Physics</i> , 2017 , 146, 044304	3.9	12

Infrared Spectra of Gas-Phase 1- and 2-Propenol Isomers. *Journal of Physical Chemistry A*, **2017**, 121, 367**9**:8688₁₀

Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments. Journal of Chemical Physics, 2017, 147, 013936 The energy dependence of CO(v,l) produced from HCO via the transition state, roaming, and triple fragmentation channels. Journal of Chemical Physics, 2017, 147, 013935 The energy dependence of CO(v,l) produced from HCO via the transition state, roaming, and triple fragmentation channels. Journal of Chemical Physics, 2017, 147, 013935 The energy dependence of CO(v,l) produced from HCO via the transition state, roaming, and triple fragmentation channels. Journal of Chemical Physics, 2017, 147, 024305 The energy dependence of Co Born-Oppenheimer breakdown. Journal of Chemical Physics, 2017, 147, 024305 The energy dependence of Co Born-Oppenheimer breakdown. Journal of Chemical Physics, 2016, 144, 144305 The energy dependence of Co Born-Oppenheimer breakdown. Journal of Physics, 2016, 144, 144305 The energy dependence Physics (Comparison of Comparison of Physics, 2016, 144, 144305 The ionization energy of CC. Journal of Chemical Physics, 2016, 144, 144305 The ionization energy of CC. Journal of Chemical Physics, 2016, 144, 144305 The ionization energy of CC. Journal of Chemical Physics, 2016, 144, 144305 The ionization energy of CC. Journal of Physical Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 Hand D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Passonance Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 2.8 15 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV 4-9 75 Inoix and the produced devices and an analysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014,				
first observation of the 383 state of C. Born-Oppenheimer breakdown. Journal of Chemical Physics, 2017, 146, 134306 115 The e83 state of C: A pathway to dissociation. Journal of Chemical Physics, 2017, 147, 024305 116 Hydrogen-atom attack on phenol and toluene is ortho-directed. Physical Chemistry Chemical Physics 36 117 Atmospheric oxidation intermediates: Laser spectroscopy of resonance-stabilized radicals from p-cymene. Chemical Physics Letters, 2015, 620, 129-133 118 Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratory, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 110 H and D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 109 4(3)§-4(3)§. Journal of Physical Chemistry A, 2015, 119, 12102-8 108 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 107 In-phenylpropargyl, and methylcyclohexadienyl. Journal of Physical Chemistry A, 2014, 118, 10252-8 108 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 109 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 100 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: avylation of Ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 103 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25	118		3.9	16
The egg state of C: A pathway to dissociation. Journal of Chemical Physics, 2017, 147, 024305 The egg state of C: A pathway to dissociation. Journal of Chemical Physics, 2017, 147, 024305 Hydrogen-atom attack on phenol and toluene is ortho-directed. Physical Chemistry Chemical Physics Atmospheric oxidation intermediates: Laser spectroscopy of resonance-stabilized radicals from p-cymene. Chemical Physics 2015, 620, 129-133 Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 Hand D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)G-a(3)ū. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Ouantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484	117		3.9	24
Hydrogen-atom attack on phenol and toluene is ortho-directed. Physical Chemistry Chemical Physics 3.6 8 113 The ionization energy of C2. Journal of Chemical Physics, 2016, 144, 144305 3.9 11 114 Atmospheric oxidation intermediates: Laser spectroscopy of resonance-stabilized radicals from p-cymene. Chemical Physics Letters, 2015, 620, 129-133 Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 110 H and D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 1202-8 128 6 129 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)§-a(3)\overline{U}_3-a(3)\overlin	116		3.9	8
The ionization energy of C2. Journal of Chemical Physics, 2016, 144, 144305 The ionization energy of C2. Journal of Chemical Physics, 2016, 144, 144305 Atmospheric oxidation intermediates: Laser spectroscopy of resonance-stabilized radicals from p-cymene. Chemical Physics Letters, 2015, 620, 129-133 Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 Hand D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)@-a(3)@. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Cuantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484	115	The eg3 state of C: A pathway to dissociation. <i>Journal of Chemical Physics</i> , 2017 , 147, 024305	3.9	6
Atmospheric oxidation intermediates: Laser spectroscopy of resonance-stabilized radicals from p-cymene. Chemical Physics Letters, 2015, 620, 129-133 Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 H and D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)B-a(3)B. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	114		3.6	8
Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 H and D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)B-a(3)B. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 Jonization energies of three resonance-stabilized radicals: cyclohexadienyl (dn, n = 0, 1, 6, 7), 1-phenylpropargyl, and methylcyclohexadienyl. Journal of Physical Chemistry A, 2014, 118, 10252-8 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	113	The ionization energy of C2. Journal of Chemical Physics, 2016, 144, 144305	3.9	11
Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814 H and D attachment to naphthalene: spectra and thermochemistry of cold gas-phase 1-C10H9 and 1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)g-a(3)g. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	112		2.5	8
1-C10H8D radicals and cations. Journal of Physical Chemistry A, 2015, 119, 3225-32 109 Resonance-Enhanced 2-Photon Ionization Scheme for C2 through a Newly Identified Band System: 4(3)B-a(3)B. Journal of Physical Chemistry A, 2015, 119, 12102-8 108 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 107 Ionization energies of three resonance-stabilized radicals: cyclohexadienyl (dn, n = 0, 1, 6, 7), 1-phenylpropargyl, and methylcyclohexadienyl. Journal of Physical Chemistry A, 2014, 118, 10252-8 106 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 105 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 106 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 103 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 107 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	111	Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory	2.2	14
4(3)\bar{1}\bar{1}\bar{2}\end{align}. Journal of Physical Chemistry A, 2015, 119, 12102-8 A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061 49 75 lonization energies of three resonance-stabilized radicals: cyclohexadienyl (dn, n = 0, 1, 6, 7), 1-phenylpropargyl, and methylcyclohexadienyl. Journal of Physical Chemistry A, 2014, 118, 10252-8 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	110		2.8	6
to red LED bulbs. <i>Polymer Chemistry</i> , 2015 , 6, 5053-5061 lonization energies of three resonance-stabilized radicals: cyclohexadienyl (dn, n = 0, 1, 6, 7), 1-phenylpropargyl, and methylcyclohexadienyl. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 10252-8 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. <i>Chemical Science</i> , 2014 , 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. <i>Journal of Biomedical Optics</i> , 2014 , 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. <i>Chemistry Education Research and Practice</i> , 2013 , 14, 476-484 A phase space theory for roaming reactions. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	109		2.8	15
1-phenylpropargyl, and methylcyclohexadienyl. Journal of Physical Chemistry A, 2014, 118, 10252-8 Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chemical Science, 2014, 5, 4633-4638 Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 Z.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	108		4.9	75
Quantification of collagen I in airway tissues using second harmonic generation. Journal of Biomedical Optics, 2014, 19, 36005 The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	107		2.8	10
The timing of an experiment in the laboratory program is crucial for the student laboratory experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013, 14, 476-484 A phase space theory for roaming reactions. Journal of Physical Chemistry A, 2013, 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	106		9.4	43
experience: acylation of ferrocene as a case study. <i>Chemistry Education Research and Practice</i> , 2013 , 2.1 3 14, 476-484 A phase space theory for roaming reactions. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7631-42 2.8 25 Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	105		3.5	32
Triple-Resonance Spectroscopy Reveals the Excitation Spectrum of Very Cold, Isomer-Specific	104	experience: acylation of ferrocene as a case study. Chemistry Education Research and Practice, 2013,	2.1	3
100	103	A phase space theory for roaming reactions. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7631-42	2.8	25
	102		6.4	13

101	Experimental and theoretical investigation of triple fragmentation in the photodissociation dynamics of H2CO. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 12091-103	2.8	22
100	Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids. <i>Science</i> , 2012 , 337, 1203-6	33.3	79
99	Product state and speed distributions in photochemical triple fragmentations. <i>Faraday Discussions</i> , 2012 , 157, 227-41; discussion 243-84	3.6	26
98	Hydroxyl addition to aromatic alkenes: resonance-stabilized radical intermediates. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 7906-15	2.8	16
97	Excitation spectra of the jet-cooled 4-phenylbenzyl and 4-(4'-methylphenyl)benzyl radicals. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 10780-5	2.8	7
96	Phototautomerization of Acetaldehyde to Vinyl Alcohol: A Primary Process in UV-Irradiated Acetaldehyde from 295 to 335 nm. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3522-6	6.4	45
95	On the electronic spectroscopy of closed-shell cations derived from resonance-stabilized radicals: Insights from theory and Franck-Condon analysis. <i>Astronomy and Astrophysics</i> , 2012 , 541, A8	5.1	8
94	Chemistry. Roaming reaction pathways along excited states. <i>Science</i> , 2012 , 335, 1054-5	33.3	20
93	Spectroscopy and dynamics of the predissociated, quasi-linear S2 state of chlorocarbene. <i>Journal of Chemical Physics</i> , 2012 , 137, 104307	3.9	9
92	Dissociation energy and vibrational predissociation dynamics of the ammonia dimer. <i>Journal of Chemical Physics</i> , 2011 , 135, 084312	3.9	13
92 91		3.9 17.6	13 53
	Chemical Physics, 2011 , 135, 084312		
91	Chemical Physics, 2011 , 135, 084312 Near-threshold H/D exchange in CD $\overline{\alpha}$ HO photodissociation. Nature Chemistry, 2011 , 3, 443-8 Electronic spectroscopy of the B \sim (0,0,0)<-X \sim (0,0,0) transition of DCO and lifetimes and relative	17.6	53
91 90	Chemical Physics, 2011 , 135, 084312 Near-threshold H/D exchange in CD©HO photodissociation. Nature Chemistry, 2011 , 3, 443-8 Electronic spectroscopy of the B~(0,0,0)<-X~(0,0,0) transition of DCO and lifetimes and relative quantum yields of the B~(0,0,0) state. Journal of Molecular Spectroscopy, 2011 , 270, 33-39 A disconnect between staff and student perceptions of learning: an ACELL educational analysis of the first year undergraduate chemistry experiment linvestigating sugar using a home made	17.6	53
91 90 89	Near-threshold H/D exchange in CD©HO photodissociation. <i>Nature Chemistry</i> , 2011 , 3, 443-8 Electronic spectroscopy of the B~(0,0,0)<-X~(0,0,0) transition of DCO and lifetimes and relative quantum yields of the B~(0,0,0) state. <i>Journal of Molecular Spectroscopy</i> , 2011 , 270, 33-39 A disconnect between staff and student perceptions of learning: an ACELL educational analysis of the first year undergraduate chemistry experiment linvestigating sugar using a home made polarimeter (Chemistry Education Research and Practice, 2011 , 12, 469-477 Excitation and emission spectra of jet-cooled naphthylmethyl radicals. <i>Journal of Physical Chemistry</i>	17.6 1.3 2.1	53 1 5
91 90 89 88	Chemical Physics, 2011, 135, 084312 Near-threshold H/D exchange in CDITHO photodissociation. Nature Chemistry, 2011, 3, 443-8 Electronic spectroscopy of the B~(0,0,0)<-X~(0,0,0) transition of DCO and lifetimes and relative quantum yields of the B~(0,0,0) state. Journal of Molecular Spectroscopy, 2011, 270, 33-39 A disconnect between staff and student perceptions of learning: an ACELL educational analysis of the first year undergraduate chemistry experiment Investigating sugar using a home made polarimeter II Chemistry Education Research and Practice, 2011, 12, 469-477 Excitation and emission spectra of jet-cooled naphthylmethyl radicals. Journal of Physical Chemistry A, 2011, 115, 7959-65 Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. I.	17.6 1.3 2.1 2.8	531516
91 90 89 88 87	Near-threshold H/D exchange in CDICHO photodissociation. <i>Nature Chemistry</i> , 2011 , 3, 443-8 Electronic spectroscopy of the B~(0,0,0)<-X~(0,0,0) transition of DCO and lifetimes and relative quantum yields of the B~(0,0,0) state. <i>Journal of Molecular Spectroscopy</i> , 2011 , 270, 33-39 A disconnect between staff and student perceptions of learning: an ACELL educational analysis of the first year undergraduate chemistry experiment linvestigating sugar using a home made polarimeter <i>Ill Chemistry Education Research and Practice</i> , 2011 , 12, 469-477 Excitation and emission spectra of jet-cooled naphthylmethyl radicals. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 7959-65 Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. I. Spectroscopic analysis. <i>Journal of Chemical Physics</i> , 2011 , 135, 104315	17.6 1.3 2.1 2.8	53 1 5 16 8

(2007-2009)

83	The halocarbenes: model systems for understanding the spectroscopy, dynamics and chemistry of carbenes. <i>International Reviews in Physical Chemistry</i> , 2009 , 28, 435-480	7	41
82	Photochemical formation of HCO and CH3 on the ground S0 (1A') state of CH3CHO. <i>Journal of Chemical Physics</i> , 2009 , 130, 054310	3.9	39
81	Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical. <i>Journal of Chemical Physics</i> , 2009 , 130, 144313	3.9	27
80	Identification of the jet-cooled 1-indanyl radical by electronic spectroscopy. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 10279-83	2.8	22
79	Spectroscopic identification of the resonance-stabilized cis- and trans-1-vinylpropargyl radicals. Journal of the American Chemical Society, 2009 , 131, 13423-9	16.4	40
78	Two-dimensional fluorescence spectroscopy for the identification of discharge intermediates. <i>Journal of Physics: Conference Series</i> , 2009 , 185, 012037	0.3	1
77	What Makes a Good Laboratory Learning Exercise? Student Feedback from the ACELL Project 2009 , 363	3-376	2
76	Unraveling the A(1)B1 . Journal of Physical Chemistry A, 2008, 112, 11355-62	2.8	9
75	Spectroscopic observation of the resonance-stabilized 1-phenylpropargyl radical. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3137-42	16.4	62
74	Quantitative (upsilon, N, Ka) product state distributions near the triplet threshold for the reaction H2CO> H + HCO measured by Rydberg tagging and laser-induced fluorescence. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 9283-9	2.8	8
73	Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 12719-24	11.5	169
72	Educational analysis of the first year chemistry experiment Thermodynamics Think-Inflan ACELL experiment. <i>Chemistry Education Research and Practice</i> , 2007 , 8, 255-273	2.1	6
71	Advancing Chemistry by Enhancing Learning in the Laboratory (ACELL): a model for providing professional and personal development and facilitating improved student laboratory learning outcomes. <i>Chemistry Education Research and Practice</i> , 2007 , 8, 232-254	2.1	23
70	Laser-induced fluorescence spectrum of 3-vinyl-1H-indene. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 3306-12	2.8	5
69	Observation of the predissociated, quasilinear B(1A') state of CHF by optical-optical double resonance. <i>Journal of Chemical Physics</i> , 2007 , 126, 051105	3.9	19
68	The d (3)Pi(g)-c (3)Sigma(u) (+) band system of C2. Journal of Chemical Physics, 2007, 127, 214303	3.9	33
67	Spectroscopy of the A(1B2)-X(1A1) transition of jet-cooled fluorobenzene: laser-induced fluorescence, dispersed fluorescence, and pathological Fermi resonances. <i>Journal of Chemical Physics</i> , 2007 , 127, 094303	3.9	21
66	Photodissociation dynamics of the reaction H2CO>H+HCO via the singlet (S0) and triplet (T1) surfaces. <i>Journal of Chemical Physics</i> , 2007 , 127, 064302	3.9	17

65	A classical trajectory study of the photodissociation of T1 acetaldehyde: the transition from impulsive to statistical dynamics. <i>Journal of Chemical Physics</i> , 2006 , 124, 044302	3.9	33
64	Photodissociation of acetaldehyde as a second example of the roaming mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 16079-82	11.5	176
63	Experimental and theoretical investigation of the dispersed fluorescence spectroscopy of HC4S. Journal of Chemical Physics, 2006 , 124, 194310	3.9	10
62	Observation of the d3Pi(g). <i>Journal of Chemical Physics</i> , 2006 , 125, 231101	3.9	23
61	Signatures of H2CO photodissociation from two electronic states. <i>Science</i> , 2006 , 311, 1443-6	33.3	65
60	Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 12355-9	2.8	42
59	Sequence Structure Emission in the Red Rectangle Bands. <i>Astrophysical Journal</i> , 2006 , 639, 194-203	4.7	21
58	Rotational analysis of the HCO B[PA?)-X[PA?)311 and 321 bands. <i>Journal of Molecular Spectroscopy</i> , 2006 , 237, 163-173	1.3	6
57	Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: from Nb2O5 grains to microporous Na2Nb2O6.2/3H2O fibers and NaNbO3 cubes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2373-84	16.4	166
56	Laser-induced fluorescence excitation and dispersed fluorescence spectroscopy of the [] [IB1] [IA1] transition of dichlorocarbene. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 100-108	3.6	17
55	Pulsed oscillating mass spectrometer: a miniaturized type of time-of-flight mass spectrometer. <i>Analytical Chemistry</i> , 2005 , 77, 4448-52	7.8	6
54	Reassignment of the CI stretching frequency in the [[[1]A?]] state of CBrCl. <i>Journal of Molecular Spectroscopy</i> , 2005 , 231, 96-97	1.3	4
53	Quantum chemical computation of the spectroscopic constants of the X[/1A?),a[/BA?)andA[/1A?) states of CBrCl and its heat of formation. <i>Chemical Physics Letters</i> , 2005 , 405, 258-264	2.5	9
52	A rapid radiochemical bacterial bioassay to evaluate copper toxicity in freshwaters. <i>Archives of Environmental Contamination and Toxicology</i> , 2005 , 49, 471-9	3.2	4
51	Fully state-resolved photodissociation of formaldehyde, H2CO> H + HCO:K conservation and a rigorous test of statistical theories. <i>Journal of Chemical Physics</i> , 2005 , 122, 194312	3.9	23
50	Reassignment of the CH stretching frequency of CHF in the A electronic state. <i>Journal of Chemical Physics</i> , 2004 , 120, 3517-8	3.9	15
49	Quantum Chemical Determination of the Equilibrium Geometries and Harmonic Vibrational Frequencies of 1,1日 1,2日and 2,2日binaphthyl in Their Ground and Excited (1La) Electronic States. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 172-184	2.8	13
48	An experimental and theoretical investigation of the triple fragmentation of CFClBr2 by photolysis near 250 nm. <i>Chemical Physics Letters</i> , 2003 , 370, 469-477	2.5	5

(1995-2003)

47	Rovibronic spectroscopy of the transition in the bromochloromethylene radical. <i>Journal of Molecular Spectroscopy</i> , 2003 , 220, 137-149	1.3	13
46	Semiempirical Model of Vibrational Relaxation for Estimating Absolute Rate Coefficients <i>Journal of Physical Chemistry A</i> , 2003 , 107, 10813-10825	2.8	7
45	Near Threshold Photochemistry of Propanal. Barrier Height, Transition State Structure, and Product State Distributions for the HCO Channel. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 5817-5827	2.8	23
44	Electronic spectroscopy of jet-cooled CFCl: Laser-induced fluorescence, dispersed fluorescence, lifetimes, and Ctl dissociation barrier. <i>Journal of Chemical Physics</i> , 2001 , 115, 11118-11130	3.9	26
43	Electronic Spectroscopy of Jet-Cooled 1,2EBinaphthyl. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 5111-	51.88	4
42	Photodissociation dynamics of the reaction CF2Br2+hE→CF2+2Br. Energetics, threshold and nascent CF2 energy distributions for 월223᠒60 nm. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 2539-2547	3.6	17
41	The Electronic Spectroscopy of 2,2EBinaphthyl in Solution, Cryogenic Matrix and Supersonic Jet. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 7442-7451	2.8	12
40	Characterization of the [[[1A?]] state of HCF by laser induced fluorescence spectroscopy. <i>Journal of Chemical Physics</i> , 1999 , 110, 11277-11285	3.9	38
39	The photodissociation dynamics of CFBr excited into the \square (11A?) state. <i>Journal of Chemical Physics</i> , 1999 , 110, 11789-11797	3.9	20
38	Ab initio potential energy surface and vibrational frequencies of [[[1A?]]] HCF. <i>Chemical Physics Letters</i> , 1998 , 292, 80-86	2.5	36
37	The S1(1A1)-S0(1A1) Electronic Transition of Jet-Cooled o-Difluorobenzene. <i>Journal of Molecular Spectroscopy</i> , 1998 , 191, 49-67	1.3	16
36	Rotational State Dependent Fluorescence Lifetimes in CF2. <i>Journal of Molecular Spectroscopy</i> , 1998 , 192, 449-451	1.3	7
35	Electronic spectroscopy and ab initio quantum chemical study of the [[1]A?] (1A?) transition of CFBr. <i>Journal of Chemical Physics</i> , 1998 , 109, 2220-2232	3.9	28
34	HCO (N,Ka,Kc,J) distributions from near-threshold photolysis of H2CO (J,Ka,Kc). <i>Journal of Chemical Physics</i> , 1998 , 108, 3187-3198	3.9	58
33	Pulsed-Laser Polymerization Measurements of the Propagation Rate Coefficient for Butyl Acrylate. <i>Macromolecules</i> , 1996 , 29, 1918-1927	5.5	120
32	Near threshold dynamics and dissociation energy of the reaction H2CO -> HCO + H. <i>Chemical Physics Letters</i> , 1996 , 258, 626-632	2.5	75
31	A new design for a simple and effective pyrolysis nozzle in a supersonic free jet. <i>Review of Scientific Instruments</i> , 1996 , 67, 283-287	1.7	20
30	Photodissociation dynamics of NO2 at moderately high energy (∄309.1 nm; Eavail=7222 cm៕). Journal of Chemical Physics, 1995 , 103, 194-204	3.9	12

29	The electronic spectroscopy of jet-cooled m-difluorobenzene. <i>Journal of Chemical Physics</i> , 1995 , 103, 6426-6439	3.9	19
28	Nascent state distribution of HCO photoproduct arising from 309 nm photolysis of propionaldehyde. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 12704-12710		22
27	The electronic spectroscopy of jet-cooled difluorocarbene (CF2): The missing A -state stretching frequencies. <i>Journal of Chemical Physics</i> , 1995 , 103, 4476-4483	3.9	36
26	PROBING VIBRATIONAL RELAXATION WITH STIMULATED EMISSION PUMPING SPECTROSCOPY. <i>Advanced Series in Physical Chemistry</i> , 1995 , 575-618		
25	Dynamics of Acetaldehyde Dissociation at 308 nm: Rotational (N, Ka) and Translational Distributions of the HCO Photoproduct. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 10802-10808		54
24	Measurement of propagation rate coefficients using pulsed-laser polymerization and matrix-assisted laser desorption/ionization mass spectrometry. <i>Macromolecules</i> , 1993 , 26, 6684-6685	5.5	41
23	Photodissociation dynamics of 3-cyclopentenone: using the impact parameter distribution as a criterion for concertedness. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 4188-4195		10
22	Product distributions in the 157 nm photodissociation of CO2. Journal of Chemical Physics, 1992, 96, 33	2 3 338	33
21	CO product distributions from the visible photodissociation of HCO. <i>Journal of Chemical Physics</i> , 1992 , 97, 9036-9045	3.9	31
20	Photofragment excitation spectroscopy of the formyl (HCO/DCO) radical: Linewidths and predissociation rates of the A (Allstate. <i>Journal of Chemical Physics</i> , 1991 , 94, 1796-1802	3.9	52
19	Dissociation dynamics of C3O2 excited at 157.6 nm. <i>Journal of Chemical Physics</i> , 1991 , 94, 1837-1849	3.9	28
18	Observation of a parallel recoil distribution from a perpendicular absorption transition in formyl radicals HCO and DCO. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 8013-8018		33
17	Collisional excitation of CO by 2.3 eV H atoms. <i>Journal of Chemical Physics</i> , 1991 , 94, 1141-1149	3.9	24
16	The photochemistry of the formyl radical: Energy content of the photoproducts. <i>Journal of Chemical Physics</i> , 1990 , 92, 6332-6333	3.9	24
15	Temperature dependence of vibrational relaxation in the very-low-energy collision regime: The ground electronic state of p-difluorobenzene prepared by stimulated emission pumping. <i>Journal of Chemical Physics</i> , 1990 , 93, 3151-3159	3.9	12
14	Temperature dependence of state-to-state vibrational relaxation from the 441(1B2u) state of naphthalene induced by very low energy collisions with argon. <i>Journal of Chemical Physics</i> , 1990 , 93, 47	'6हैं: ² 477	78 ¹⁰
13	The 193-nm photodissociation of cyclobutanone: dynamics of the C2 and C3 channels. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 3031-3039		10
12	Photodissociation dynamics of acetone at 193 nm: Photofragment internal and translational energy distributions. <i>Journal of Chemical Physics</i> , 1989 , 91, 7498-7513	3.9	129

LIST OF PUBLICATIONS

11	Is there resonance enhancement of the cross section for vibrational relaxation induced by very low energy collisions? The I2He system revisited. <i>Journal of Chemical Physics</i> , 1988 , 89, 6777-6784	3.9	14
10	The S1B0(1B2ullAg) transition of p-difluorobenzene cooled in a supersonic free jet expansion. Excitation and dispersed fluorescence spectra, vibrational assignments, Fermi resonances, and forbidden transitions. <i>Journal of Chemical Physics</i> , 1988 , 89, 7139-7160	3.9	73
9	Collision partner and level dependence of vibrational relaxation in S0 p-difluorobenzene. Stimulated emission pumping combined with single vibronic level fluorescence spectroscopy. <i>Journal of Chemical Physics</i> , 1988 , 88, 4748-4764	3.9	31
8	Vibrational relaxation induced by very low energy collisions in the S1(1B2u) state of naphthalene: a search for resonance enhancement of the cross section. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 375	1-376	0 ²²
7	Collision-free lifetimes of vibrational levels in S0 p-difluorobenzene: a view of IVR and an application of SEP-SVLF spectroscopy. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 1004-1006		10
6	Stimulated emission pumping of p-difluorobenzene cooled in a supersonic free jet. Vibrational relaxation in S0 induced by very low energy collisions. <i>Journal of Chemical Physics</i> , 1987 , 86, 4709-4711	3.9	29
5	Level dependence of vibrational relaxation rates in S0 p-difluorobenzene in the range \textstyle ib=1500\textstyle 300 cm\textstyle Large efficiencies with He as a collision partner. <i>Journal of Chemical Physics</i> , 1986 , 85, 6234-6235	3.9	16
4	Laser-induced fluorescence measurement and analytical model for the reaction probability of CF2 on Si. <i>Journal of Applied Physics</i> , 1986 , 60, 2775-2777	2.5	37
3	Mode-dependent intramolecular vibrational redistribution in the S1 state of jet-cooled p-difluorobenzene. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 2937-2940		30
2	Translational temperature dependence of mode-to-mode vibrational energy flow in 1B3u naphthalene induced by low energy collisions with Ar. <i>Journal of Chemical Physics</i> , 1983 , 79, 2869-2880	3.9	17
1	Evidence for mode-specific intramolecular vibrational redistribution in S1 p-difluorobenzene. <i>The Journal of Physical Chemistry</i> , 1982 , 86, 1244-1247		28