Lindsay B Hutley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255293/publications.pdf

Version: 2024-02-01

154 papers 10,589 citations

28242 55 h-index 95 g-index

190 all docs

190 docs citations

190 times ranked 11750 citing authors

#	Article	IF	CITATIONS
1	An Australian blue carbon method to estimate climate change mitigation benefits of coastal wetland restoration. Restoration Ecology, 2023, 31, .	1.4	25
2	Deuterium depletion in xylem water and soil isotopic effects complicate the assessment of riparian tree water sources in the seasonal tropics. Ecohydrology, 2022, 15, .	1.1	10
3	Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?. Hydrology and Earth System Sciences, 2022, 26, 525-550.	1.9	3
4	Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model. Geoscientific Model Development, 2022, 15, 883-900.	1.3	2
5	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	4.2	14
6	Nitrogen concentration and physical properties are key drivers of woody tissue respiration. Annals of Botany, 2022, 129, 633-646.	1.4	4
7	Gross primary productivity and water use efficiency are increasing in a high rainfall tropical savanna. Global Change Biology, 2022, 28, 2360-2380.	4.2	11
8	Vegetation over the last glacial maximum at Girraween Lagoon, monsoonal northern Australia. Quaternary Research, 2021, 102, 39-52.	1.0	14
9	Impact of an extreme monsoon on CO2 and CH4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar. Science of the Total Environment, 2021, 760, 143422.	3.9	17
10	Processes and Factors Driving Change in Mangrove Forests: An Evaluation Based on the Mass Dieback Event in Australia's Gulf of Carpentaria. Ecological Studies, 2021, , 221-264.	0.4	14
11	Alkalinity Production Coupled to Pyrite Formation Represents an Unaccounted Blue Carbon Sink. Global Biogeochemical Cycles, 2021, 35, e2020GB006785.	1.9	16
12	Living on the edge: A continentalâ€scale assessment of forest vulnerability to drought. Global Change Biology, 2021, 27, 3620-3641.	4.2	50
13	Belowground competition and growth of juvenile trees in a long-unburnt Australian savanna. Forest Ecology and Management, 2021, 491, 119141.	1.4	О
14	Soil carbon density can increase when Australian savanna is converted to pasture, but may not change under intense cropping systems. Agriculture, Ecosystems and Environment, 2021, 319, 107527.	2.5	1
15	Influence of the 2015–2016 El Niño on the record-breaking mangrove dieback along northern Australia coast. Scientific Reports, 2021, 11, 20411.	1.6	22
16	Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 2020, 187, 104414.	2.2	127
17	The global distribution of leaf chlorophyll content. Remote Sensing of Environment, 2020, 236, 111479.	4.6	122
18	Net landscape carbon balance of a tropical savanna: Relative importance of fire and aquatic export in offsetting terrestrial production. Global Change Biology, 2020, 26, 5899-5913.	4.2	17

#	Article	IF	Citations
19	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
20	Land transformation in tropical savannas preferentially decomposes newly added biomass, whether C ₃ or C ₄ derived. Ecological Applications, 2020, 30, e02192.	1.8	6
21	Exploring the Variability of Tropical Savanna Tree Structural Allometry with Terrestrial Laser Scanning. Remote Sensing, 2020, 12, 3893.	1.8	17
22	Spatiotemporal partitioning of savanna plant functional type productivity along NATT. Remote Sensing of Environment, 2020, 246, 111855.	4.6	19
23	Tracerâ€Aided Modeling in the Lowâ€Relief, Wetâ€Dry Tropics Suggests Water Ages and DOC Export Are Driven by Seasonal Wetlands and Deep Groundwater. Water Resources Research, 2020, 56, e2019WR026175.	1.7	18
24	Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and landâ€use change. Global Change Biology, 2020, 26, 3028-3039.	4.2	80
25	Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand. Agricultural and Forest Meteorology, 2020, 287, 107934.	1.9	15
26	Effect of elevated magnesium sulfate on two riparian tree species potentially impacted by mine site contamination. Scientific Reports, 2020, 10, 2880.	1.6	4
27	Seasonal Shift From Biogenic to Geogenic Fluvial Carbon Caused by Changing Water Sources in the Wetâ€Dry Tropics. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005384.	1.3	15
28	Savanna. , 2019, , 623-633.		8
29	High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia. Ecosystem Services, 2019, 40, 101035.	2.3	21
30	Effect of landâ€use and landâ€cover change on mangrove blue carbon: A systematic review. Global Change Biology, 2019, 25, 4291-4302.	4.2	153
31	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
32	Groundwaterâ€Derived DIC and Carbonate Buffering Enhance Fluvial CO ₂ Evasion in Two Australian Tropical Rivers. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 312-327.	1.3	34
33	Holocene savanna dynamics in the seasonal tropics of northern Australia. Review of Palaeobotany and Palynology, 2019, 267, 17-31.	0.8	17
34	Phenology Dynamics of Dryland Ecosystems Along the North Australian Tropical Transect Revealed by Satellite Solarâ€Induced Chlorophyll Fluorescence. Geophysical Research Letters, 2019, 46, 5294-5302.	1.5	51
35	Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves. Science of the Total Environment, 2019, 665, 419-431.	3.9	28
36	Stem diameter growth rates in a fireâ€prone savanna correlate with photosynthetic rate and branchâ€scale biomass allocation, but not specific leaf area. Austral Ecology, 2019, 44, 339-350.	0.7	17

#	Article	IF	Citations
37	Hydroperiod, soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi, Indonesia. Science of the Total Environment, 2019, 654, 365-377.	3.9	40
38	Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 2019, 29, e01810.	1.8	47
39	Environmental challenges in a near-pristine mangrove estuary facing rapid urban and industrial development: Darwin Harbour, Northern Australia. Regional Studies in Marine Science, 2019, 25, 100438.	0.4	8
40	Community Structure Dynamics and Carbon Stock Change of Rehabilitated Mangrove Forests in Sulawesi, Indonesia. Bulletin of the Ecological Society of America, 2019, 100, e01478.	0.2	2
41	Identifying the â€~savanna' signature in lacustrine sediments in northern Australia. Quaternary Science Reviews, 2019, 203, 233-247.	1.4	14
42	Seasonal, interannual and decadal drivers of tree and grass productivity in an Australian tropical savanna. Global Change Biology, 2018, 24, 2530-2544.	4.2	24
43	Exotic grass invasion alters microsite conditions limiting woody recruitment potential in an Australian savanna. Scientific Reports, 2018, 8, 6628.	1.6	11
44	Termite mounds mitigate half of termite methane emissions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13306-13311.	3.3	51
45	Inverse Determination of the Influence of Fire on Vegetation Carbon Turnover in the Pantropics. Global Biogeochemical Cycles, 2018, 32, 1776-1789.	1.9	19
46	Technical note: Rapid image-based field methods improve the quantification of termite mound structures and greenhouse-gas fluxes. Biogeosciences, 2018, 15, 3731-3742.	1.3	18
47	CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nature Geoscience, 2018, 11, 813-818.	5.4	109
48	Preface: OzFlux: a network for the study of ecosystem carbon and water dynamics across Australia and New Zealand. Biogeosciences, 2018, 15, 349-352.	1.3	7
49	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	8.1	330
50	Effect of environmental conditions on the relationship between solarâ€induced fluorescence and gross primary productivity at an OzFlux grassland site. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 716-733.	1.3	139
51	Responses of LAI to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia. Scientific Reports, 2017, 7, 11720.	1.6	12
52	Invasive Andropogon gayanus (Gamba grass) alters litter decomposition and nitrogen fluxes in an Australian tropical savanna. Scientific Reports, 2017, 7, 11705.	1.6	15
53	The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO ₂ Exchange. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6517-6532.	2.7	69
54	Tree–grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna. Biogeosciences, 2017, 14, 111-129.	1.3	28

#	Article	IF	Citations
55	Technical note: DynamicÂlNtegrated Gap-filling and partitioning for OzFlux (DINGO). Biogeosciences, 2017, 14, 1457-1460.	1.3	28
56	Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences, 2017, 14, 4711-4732.	1.3	45
57	A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences, 2016, 13, 3245-3265.	1.3	32
58	Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences, 2016, 13, 761-779.	1.3	32
59	Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. Biogeosciences, 2016, 13, 6285-6303.	1.3	16
60	Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the "Angry Summer―of 2012/2013. Biogeosciences, 2016, 13, 5947-5964.	1.3	48
61	The contribution of trees and grasses to productivity of an Australian tropical savanna. Biogeosciences, 2016, 13, 2387-2403.	1.3	35
62	Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography. Biogeosciences, 2016, 13, 5085-5102.	1.3	75
63	MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity. Biogeosciences, 2016, 13, 5587-5608.	1.3	30
64	An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 2016, 13, 5895-5916.	1.3	159
65	The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Science of the Total Environment, 2016, 568, 1263-1274.	3.9	70
66	Monitoring the Distribution and Dynamics of an Invasive Grass in Tropical Savanna Using Airborne LiDAR. Remote Sensing, 2015, 7, 5117-5132.	1.8	21
67	Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Frontiers in Plant Science, 2015, 6, 560.	1.7	33
68	Vulnerability of native savanna trees and exotic <i>Khaya senegalensis</i> to seasonal drought. Tree Physiology, 2015, 35, 783-791.	1.4	18
69	Natural abundance (l̂ 15N) indicates shifts in nitrogen relations of woody taxa along a savanna–woodland continental rainfall gradient. Oecologia, 2015, 178, 297-308.	0.9	21
70	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	8.1	397
71	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	4.2	88
72	Climate change and longâ€term fire management impacts on <scp>A</scp> ustralian savannas. New Phytologist, 2015, 205, 1211-1226.	3 . 5	49

#	Article	IF	CITATIONS
73	N ₂ O, NO, N ₂ and CO ₂ emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores. Biogeosciences, 2014, 11, 6047-6065.	1.3	22
74	Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes. Environmental Research Letters, 2014, 9, 104002.	2.2	27
7 5	Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science, 2014, 343, 548-552.	6.0	500
76	Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation. Remote Sensing of Environment, 2014, 155, 349-365.	4.6	43
77	Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sensing of Environment, 2014, 154, 253-271.	4.6	56
78	Exploring the link between clouds, radiation, and canopy productivity of tropical savannas. Agricultural and Forest Meteorology, 2013, 182-183, 304-313.	1.9	69
79	Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 2013, 139, 97-115.	4.6	176
80	Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. Agricultural and Forest Meteorology, 2013, 182-183, 239-247.	1.9	53
81	Spectral analysis of fire severity in north Australian tropical savannas. Remote Sensing of Environment, 2013, 136, 56-65.	4.6	33
82	Carbon and water exchange of the world's tallest angiosperm forest. Agricultural and Forest Meteorology, 2013, 182-183, 215-224.	1.9	17
83	Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science, 2013, 28, 439-452.	1.1	38
84	Response of savanna gross primary productivity to interannual variability in rainfall. Progress in Physical Geography, 2013, 37, 642-663.	1.4	31
85	Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environmental Research Letters, 2013, 8, 045023.	2.2	37
86	The relationships between termite mound CH ₂ emissions and internal concentration ratios are species specific. Biogeosciences, 2013, 10, 2229-2240.	1.3	33
87	Control of atmospheric particles on diffuse radiation and terrestrial plant productivity. Progress in Physical Geography, 2012, 36, 209-237.	1.4	177
88	An analysis of the surface energy budget above the world's tallest angiosperm forest. Agricultural and Forest Meteorology, 2012, 166-167, 23-31.	1.9	18
89	On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agricultural and Forest Meteorology, 2012, 152, 212-222.	1.9	121
90	Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias. Journal of Hydrology, 2012, 468-469, 35-46.	2.3	64

#	Article	IF	Citations
91	Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 2012, 9, 423-437.	1.3	48
92	Modelling the potential for prescribed burning to mitigate carbon emissions from wildfires in fire-prone forests of Australia. International Journal of Wildland Fire, 2012, 21, 629.	1.0	57
93	Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agricultural and Forest Meteorology, 2011, 151, 1471-1479.	1.9	29
94	Documenting improvement in leaf area index estimates from MODIS using hemispherical photos for Australian savannas. Agricultural and Forest Meteorology, 2011, 151, 1453-1461.	1.9	56
95	Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1462-1470.	1.9	101
96	Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1440-1452.	1.9	75
97	A sub-continental scale living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1417-1428.	1.9	123
98	Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region. Agricultural and Forest Meteorology, 2011, 151, 1409-1416.	1.9	67
99	Environmental controls on the spatial variability of savanna productivity in the Northern Territory, Australia. Agricultural and Forest Meteorology, 2011, 151, 1429-1439.	1.9	49
100	The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation, 2011, 144, 1472-1480.	1.9	158
101	Assessing the relationship between fire and grazing on soil characteristics and mite communities in a semi-arid savanna of northern Australia. Pedobiologia, 2011, 54, 195-200.	0.5	11
102	Stable Isotopes Reveal the Contribution of Corticular Photosynthesis to Growth in Branches of <i>Eucalyptus miniata</i> Plant Physiology, 2011, 155, 515-523.	2.3	64
103	Is productivity of mesic savannas light limited or water limited? Results of a simulation study. Global Change Biology, 2011, 17, 3130-3149.	4.2	60
104	Changes in body fluids of the cocooning fossorial frog Cyclorana australis in a seasonally dry environment. Comparative Biochemistry and Physiology Part A, Molecular & Egrative Physiology, 2011, 160, 348-354.	0.8	8
105	Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour. Oecologia, 2011, 167, 525-534.	0.9	22
106	The Importance of Termites to the CH4 Balance of a Tropical Savanna Woodland of Northern Australia. Ecosystems, 2011, 14, 698-709.	1.6	30
107	Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sensing of Environment, 2011, 115, 2008-2024.	4.6	44
108	SPECIALâ€"Savanna Patterns of Energy and Carbon Integrated across the Landscape. Bulletin of the American Meteorological Society, 2011, 92, 1467-1485.	1.7	52

#	Article	IF	CITATIONS
109	BIODIVERSITY RESEARCH: Turning up the heat: the impacts of <i>Andropogon gayanus</i> (gamba grass) invasion on fire behaviour in northern Australian savannas. Diversity and Distributions, 2010, 16, 854-861.	1.9	151
110	Photosynthesis and water-use efficiency of seedlings from northern Australian monsoon forest, savanna and swamp habitats grown in a common garden. Functional Plant Biology, 2010, 37, 1050.	1.1	24
111	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	2.2	137
112	Managing Sources and Sinks of Greenhouse Gases in Australia's Rangelands and Tropical Savannas. Rangeland Ecology and Management, 2010, 63, 137-146.	1.1	31
113	Using longâ€ŧerm water balances to parameterize surface conductances and calculate evaporation at 0.05Ű spatial resolution. Water Resources Research, 2010, 46, .	1.7	135
114	Disturbance and Climatic Drivers of Carbon Dynamics of a North Australian Tropical Savanna., 2010,, 57-75.		14
115	Invasive <i>Andropogon gayanus</i> (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications, 2009, 19, 1546-1560.	1.8	123
116	Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. Journal of Hydrology, 2009, 369, 107-119.	2.3	216
117	Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sensing of Environment, 2009, 113, 1808-1822.	4.6	100
118	Estimating landscapeâ€scale vegetation carbon stocks using airborne multiâ€frequency polarimetric synthetic aperture radar (SAR) in the savannahs of north Australia. International Journal of Remote Sensing, 2009, 30, 1141-1159.	1.3	27
119	An optimalityâ€based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resources Research, 2009, 45, .	1.7	127
120	Andropogon gayanus (Gamba Grass) Invasion Increases Fire-mediated Nitrogen Losses in the Tropical Savannas of Northern Australia. Ecosystems, 2008, 11, 77-88.	1.6	57
121	An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences, 2008, 12, 913-932.	1.9	127
122	Savanna., 2008,, 3143-3154.		27
123	Impacts of fire on forest age and runoff in mountain ash forests — RETRACTED. Functional Plant Biology, 2008, 35, 483.	1.1	16
124	A comparison of tree water use in two contiguous vegetation communities of the seasonally dry tropics of northern Australia: the importance of site water budget to tree hydraulics. Australian Journal of Botany, 2007, 55, 700.	0.3	27
125	Carbon cycling in a mountain ash forest: Analysis of below ground respiration. Agricultural and Forest Meteorology, 2007, 147, 58-70.	1.9	22
126	Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology, 2007, 13, 990-1004.	4.2	192

#	Article	IF	CITATIONS
127	A test of the optimality approach to modelling canopy properties and CO2uptake by natural vegetation. Plant, Cell and Environment, 2007, 30, 1586-1598.	2.8	60
128	A canopy-scale test of the optimal water-use hypothesis. Plant, Cell and Environment, 2007, 31, 071030013314002-???.	2.8	42
129	Local boundary-layer development over burnt and unburnt tropical savanna: an observational study. Boundary-Layer Meteorology, 2007, 124, 291-304.	1.2	31
130	Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology, 2007, .	4.2	0
131	Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant, Cell and Environment, 2006, 29, 632-646.	2.8	73
132	The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 2005, 53, 663.	0.3	69
133	Effects of Canopy Cover and Ground Disturbance on Establishment of an Invasive Grass in an Australia Savanna ¹ . Biotropica, 2005, 37, 25-31.	0.8	45
134	Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories. Plant and Soil, 2005, 268, 161-171.	1.8	31
135	Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods. Australian Journal of Botany, 2005, 53, 689.	0.3	28
136	The estimation of carbon budgets of frequently burnt tree stands in savannas of northern Australia, using allometric analysis and isotopic discrimination. Australian Journal of Botany, 2005, 53, 621.	0.3	58
137	Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. Australian Journal of Botany, 2005, 53, 607.	0.3	75
138	Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia. Journal of Tropical Ecology, 2004, 20, 221-224.	0.5	53
139	Viewpoint: Assessing the carbon sequestration potential of mesic savannas in the Northern Territory, Australia: approaches, uncertainties and potential impacts of fire. Functional Plant Biology, 2004, 31, 415.	1.1	88
140	Carbon balance of a tropical savanna of northern Australia. Oecologia, 2003, 137, 405-416.	0.9	159
141	Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. Diversity and Distributions, 2003, 9, 169-176.	1.9	291
142	Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. International Journal of Wildland Fire, 2003, 12, 333.	1.0	131
143	Corrigendum to: Seasonal patterns of soil carbon dioxide efflux from a wet¿dry tropical savanna of northern Australia. Australian Journal of Botany, 2002, 50, 373.	0.3	2
144	Seasonal patterns of soil carbon dioxide efflux from a wet-dry tropical savanna of northern Australia. Australian Journal of Botany, 2002, 50, 43.	0.3	60

#	Article	IF	CITATIONS
145	Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Australian Journal of Botany, 2002, 50, 31.	0.3	75
146	Variation in vegetative water use in the savannas of the North Australian Tropical Transect. Journal of Vegetation Science, 2002, 13, 413-418.	1.1	35
147	Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 2001, 126, 434-443.	0.9	87
148	Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology, 2001, 21, 977-988.	1.4	129
149	Evapotranspiration from Eucalypt open-forest savanna of Northern Australia. Functional Ecology, 2000, 14, 183-194.	1.7	150
150	Dry season conditions determine wet season water use in the wet-tropical savannas of northern Australia. Tree Physiology, 2000, 20, 1219-1226.	1.4	102
151	Composition, leaf area index and standing biomass of eucalypt open forests near Darwin in the Northern Territory, Australia. Australian Journal of Botany, 2000, 48, 629.	0.3	99
152	Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiology, 1999, 19, 591-597.	1.4	198
153	Water Balance of an Australian Subtropical Rainforest at Altitude: the Ecological and Physiological Significance of Intercepted Cloud and Fog. Australian Journal of Botany, 1997, 45, 311.	0.3	148
154	Foliar Uptake of Water by Wet Leaves of Sloanea woollsii, an Australian Subtropical Rainforest Tree. Australian Journal of Botany, 1995, 43, 157.	0.3	78