
Marcos Curty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2552844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 2012, 108, 130503.	7.8	1,510
2	Secure quantum key distribution. Nature Photonics, 2014, 8, 595-604.	31.4	880
3	Finite-key analysis for measurement-device-independent quantum key distribution. Nature Communications, 2014, 5, 3732.	12.8	303
4	Concise security bounds for practical decoy-state quantum key distribution. Physical Review A, 2014, 89, .	2.5	248
5	Entanglement as a Precondition for Secure Quantum Key Distribution. Physical Review Letters, 2004, 92, 217903.	7.8	245
6	Simple security proof of twin-field type quantum key distribution protocol. Npj Quantum Information, 2019, 5, .	6.7	145
7	Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key Distribution. Physical Review Letters, 2019, 123, 100506.	7.8	142
8	Loss-tolerant quantum cryptography with imperfect sources. Physical Review A, 2014, 90, .	2.5	136
9	True random numbers from amplified quantum vacuum. Optics Express, 2011, 19, 20665.	3.4	128
10	Practical aspects of measurement-device-independent quantum key distribution. New Journal of Physics, 2013, 15, 113007.	2.9	128
11	Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 2014, 22, 1645.	3.4	114
12	Experimentally realizable quantum comparison of coherent states and its applications. Physical Review A, 2006, 74, .	2.5	108
13	Heralded-qubit amplifiers for practical device-independent quantum key distribution. Physical Review A, 2011, 84, .	2.5	103
14	Quantum authentication of classical messages. Physical Review A, 2001, 64, .	2.5	100
15	Complete hierarchies of efficient approximations to problems in entanglement theory. Physical Review A, 2004, 70, .	2.5	76
16	Comment on "Arbitrated quantum-signature scheme― Physical Review A, 2008, 77, .	2.5	76
17	Decoy-state quantum key distribution with a leaky source. New Journal of Physics, 2016, 18, 065008.	2.9	69
18	Passive decoy-state quantum key distribution with practical light sources. Physical Review A, 2010, 81, .	2.5	67

MARCOS CURTY

#	Article	IF	CITATIONS
19	Qubit authentication. Physical Review A, 2002, 66, .	2.5	56
20	Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution. Optics Letters, 2009, 34, 3238.	3.3	56
21	Laser-seeding Attack in Quantum Key Distribution. Physical Review Applied, 2019, 12, .	3.8	56
22	Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Physical Review A, 2017, 95, .	2.5	52
23	Quantum key distribution with correlated sources. Science Advances, 2020, 6, .	10.3	52
24	Measurement-device-independent quantum digital signatures. Physical Review A, 2016, 94, .	2.5	51
25	Experimental Unconditionally Secure Bit Commitment. Physical Review Letters, 2014, 112, 010504.	7.8	47
26	Finite-key security analysis of quantum key distribution with imperfect light sources. New Journal of Physics, 2015, 17, 093011.	2.9	46
27	Insecurity of Detector-Device-Independent Quantum Key Distribution. Physical Review Letters, 2016, 117, 250505.	7.8	46
28	Quantum key distribution with flawed and leaky sources. Npj Quantum Information, 2019, 5, .	6.7	45
29	Detecting two-party quantum correlations in quantum-key-distribution protocols. Physical Review A, 2005, 71, .	2.5	44
30	Discrete and continuous variables for measurement-device-independent quantum cryptography. Nature Photonics, 2015, 9, 772-773.	31.4	44
31	Implementation of two-party protocols in the noisy-storage model. Physical Review A, 2010, 81, .	2.5	38
32	Security of Distributed-Phase-Reference Quantum Key Distribution. Physical Review Letters, 2012, 109, 260501.	7.8	36
33	Security proof for a simplified Bennett-Brassard 1984 quantum-key-distribution protocol. Physical Review A, 2018, 98, .	2.5	36
34	Practical decoy-state method for twin-field quantum key distribution. New Journal of Physics, 2019, 21, 073001.	2.9	34
35	Tight finite-key security for twin-field quantum key distribution. Npj Quantum Information, 2021, 7, .	6.7	34
36	Asymmetric twin-field quantum key distribution. New Journal of Physics, 2019, 21, 113032.	2.9	30

MARCOS CURTY

#	Article	IF	CITATIONS
37	Quantum key distribution with setting-choice-independently correlated light sources. Npj Quantum Information, 2019, 5, .	6.7	29
38	Finite-key security analysis for quantum key distribution with leaky sources. New Journal of Physics, 2018, 20, 083027.	2.9	28
39	Detector decoy quantum key distribution. New Journal of Physics, 2009, 11, 045008.	2.9	27
40	Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses. Physical Review A, 2005, 71, .	2.5	25
41	Effect of finite detector efficiencies on the security evaluation of quantum key distribution. Physical Review A, 2004, 69, .	2.5	23
42	One-way quantum key distribution: Simple upper bound on the secret key rate. Physical Review A, 2006, 74, .	2.5	23
43	Foiling covert channels and malicious classical post-processing units in quantum key distribution. Npj Quantum Information, 2019, 5, .	6.7	20
44	Practical Quantum Key Distribution That is Secure Against Side Channels. Physical Review Applied, 2021, 15, .	3.8	20
45	Security of quantum key distribution with intensity correlations. Quantum - the Open Journal for Quantum Science, 0, 5, 602.	0.0	19
46	Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks. Physical Review A, 2008, 77, .	2.5	18
47	Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals. Physical Review A, 2010, 82, .	2.5	17
48	Measurement-device-independent quantum key distribution with leaky sources. Scientific Reports, 2021, 11, 1678.	3.3	16
49	Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors. New Journal of Physics, 2018, 20, 043018.	2.9	15
50	Long-distance device-independent quantum key distribution. Scientific Reports, 2019, 9, 17749.	3.3	15
51	Upper Security Bounds for Coherent-One-Way Quantum Key Distribution. Physical Review Letters, 2020, 125, 260510.	7.8	14
52	Upper bound on the secret key rate distillable from effective quantum correlations with imperfect detectors. Physical Review A, 2006, 73, .	2.5	13
53	Improved finite-key security analysis of quantum key distribution against Trojan-horse attacks. Quantum Science and Technology, 2022, 7, 035021.	5.8	12
54	Secure quantum communication in the presence of phase- and polarization-dependent loss. Physical Review A, 2018, 98, .	2.5	11

MARCOS CURTY

#	Article	IF	CITATIONS
55	Zero-error attack against coherent-one-way quantum key distribution. New Journal of Physics, 2021, 23, 093005.	2.9	10
56	Secure quantum key distribution with a subset of malicious devices. Npj Quantum Information, 2021, 7,	6.7	9
57	A quantum leap in security. Physics Today, 2021, 74, 36-41.	0.3	8
58	Upper bounds for the secure key rate of the decoy-state quantum key distribution. Physical Review A, 2009, 79, .	2.5	7
59	Experimental Quantum Key Distribution Secure Against Malicious Devices. Physical Review Applied, 2021, 15, .	3.8	7
60	Single-photon quantum key distribution in the presence of loss. Physical Review A, 2007, 75, .	2.5	6
61	Security of quantum key distribution with iterative sifting. Quantum Science and Technology, 2018, 3, 014002.	5.8	6
62	Passive Decoy-State Quantum Key Distribution with Coherent Light. Entropy, 2015, 17, 4064-4082.	2.2	5
63	Quantum authentication with unitary coding sets. Journal of Modern Optics, 2003, 50, 1035-1047.	1.3	4
64	Know your enemy. Nature Physics, 2014, 10, 479-480.	16.7	3
65	Beating the repeaterless bound with adaptive measurement-device-independent quantum key distribution. New Journal of Physics, 2019, 21, 113052.	2.9	3
66	Foiling zero-error attacks against coherent-one-way quantum key distribution. Physical Review A, 2021, 104, .	2.5	3
67	Device-Independent Quantum Key Distribution. , 2012, , .		2
68	Quantum key distribution secure against partly malicious devices. , 2017, , .		2
69	Passive preparation of BB84 signal states with coherent light. Progress in Informatics, 2011, , 57.	0.2	2
70	Detecting quantum correlations for quantum key distribution. , 2005, 5631, 9.		1
71	Quantum authentication with unitary coding sets. Journal of Modern Optics, 2003, 50, 1035-1047.	1.3	1
72	Upper bounds for the security of differential-phase-shift quantum key distribution with weak coherent states. , 2009, , .		0

#	Article	IF	CITATIONS
73	Passive Decoy State Quantum Key Distribution with Coherent Light. , 2010, , .		Ο
74	Passive Decoy State Quantum Key Distribution. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 132-141.	0.3	0
75	Bridging the gap between theory and practice in quantum cryptography. , 2015, , .		Ο
76	Practical Measurement Device Independent Quantum Key Distribution. , 2013, , .		0
77	Quantum cryptography with malicious devices. , 2018, , .		0