
Manuel Collado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2552582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
2	Cellular Senescence in Cancer and Aging. Cell, 2007, 130, 223-233.	13.5	1,484
3	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	13.7	1,280
4	Programmed Cell Senescence during Mammalian Embryonic Development. Cell, 2013, 155, 1104-1118.	13.5	1,081
5	Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 2010, 10, 51-57.	12.8	947
6	The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 2009, 460, 1136-1139.	13.7	897
7	Pancreatitis-Induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell, 2011, 19, 728-739.	7.7	437
8	A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes and Development, 2007, 21, 379-384.	2.7	427
9	The power and the promise of oncogene-induced senescence markers. Nature Reviews Cancer, 2006, 6, 472-476.	12.8	372
10	Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature, 2014, 515, 134-137.	13.7	284
11	Inhibition of the Phosphoinositide 3-Kinase Pathway Induces a Senescence-like Arrest Mediated by p27Kip1. Journal of Biological Chemistry, 2000, 275, 21960-21968.	1.6	231
12	Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 2019, 10, 4731.	5.8	230
13	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.4	180
14	Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene, 2009, 28, 3423-3428.	2.6	165
15	Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Research Reviews, 2018, 42, 56-71.	5.0	150
16	p27Kip1 Directly Represses Sox2 during Embryonic Stem Cell Differentiation. Cell Stem Cell, 2012, 11, 845-852.	5.2	134
17	Inactivation of the Candidate Tumor Suppressor Par-4 in Endometrial Cancer. Cancer Research, 2007, 67, 1927-1934.	0.4	100
18	Tumourâ€suppression activity of the proapoptotic regulator Par4. EMBO Reports, 2005, 6, 577-583.	2.0	99

MANUEL COLLADO

#	Article	IF	CITATIONS
19	Advances toward More Efficient Targeted Delivery of Nanoparticles <i>in Vivo</i> : Understanding Interactions between Nanoparticles and Cells. ACS Nano, 2017, 11, 2397-2402.	7.3	98
20	BCR-ABL and Interleukin 3 Promote Haematopoietic Cell Proliferation and Survival through Modulation of Cyclin D2 and p27Kip1 Expression. Journal of Biological Chemistry, 2001, 276, 23572-23580.	1.6	94
21	Antiâ€∎ging activity of the <i>Ink4/Arf</i> locus. Aging Cell, 2009, 8, 152-161.	3.0	92
22	WNT16B Is a New Marker of Cellular Senescence That Regulates p53 Activity and the Phosphoinositide 3-Kinase/AKT Pathway. Cancer Research, 2009, 69, 9183-9191.	0.4	91
23	p19ARFDeficiency Reduces Macrophage and Vascular Smooth Muscle Cell Apoptosis and Aggravates Atherosclerosis. Journal of the American College of Cardiology, 2010, 55, 2258-2268.	1.2	86
24	Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. Rna, 2008, 14, 1424-1432.	1.6	82
25	Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO Journal, 2008, 27, 2181-2193.	3.5	77
26	Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell, 2020, 19, e13052.	3.0	77
27	The Senescent Side of Tumor Suppression. Cell Cycle, 2005, 4, 1722-1724.	1.3	71
28	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	1.6	70
29	Resistance to viral infection of super p53 mice. Oncogene, 2005, 24, 3059-3062.	2.6	66
30	Efficient Chirality Switching in the Addition of Diethylzinc to Aldehydes in the Presence of Simple Chiral αâ€Amino Amides. Angewandte Chemie - International Edition, 2007, 46, 9002-9005.	7.2	54
31	Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell, 2012, 11, 41-50.	3.0	51
32	Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression. PLoS ONE, 2009, 4, e5475.	1.1	50
33	SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation, 2011, 18, 72-79.	5.0	49
34	Antiviral action of the tumor suppressor ARF. EMBO Journal, 2006, 25, 4284-4292.	3.5	43
35	TGFβ2-induced senescence during early inner ear development. Scientific Reports, 2019, 9, 5912.	1.6	42
36	Lack of Adipocyte-Fndc5/Irisin Expression and Secretion Reduces Thermogenesis and Enhances Adipogenesis. Scientific Reports, 2017, 7, 16289.	1.6	41

MANUEL COLLADO

#	Article	IF	CITATIONS
37	Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12962-12967.	3.3	40
38	SUMOylation regulates AKT1 activity. Oncogene, 2015, 34, 1442-1450.	2.6	39
39	Different cooperating effect of p21 or p27 deficiency in combination with INK4a/ARF deletion in mice. Oncogene, 2004, 23, 8231-8237.	2.6	36
40	Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene, 2007, 26, 1645-1649.	2.6	36
41	The role of cellular senescence in tissue repair and regeneration. Mechanisms of Ageing and Development, 2021, 198, 111528.	2.2	35
42	Genomic Profiling of Circulating Plasma RNA for the Analysis of Cancer. Clinical Chemistry, 2007, 53, 1860-1863.	1.5	32
43	The development of cell senescence. Experimental Gerontology, 2019, 128, 110742.	1.2	31
44	Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell, 2018, 17, e12834.	3.0	24
45	SUMOylation of p53 mediates interferon activities. Cell Cycle, 2013, 12, 2809-2816.	1.3	23
46	Rag1 immunodeficiencyâ€induced early aging and senescence in zebrafish are dependent on chronic inflammation and oxidative stress. Aging Cell, 2019, 18, e13020.	3.0	23
47	A polylysine-induced aggregation of substrate accompanies the stimulation of casein kinase II by polylysine. Biochemical Journal, 1993, 289, 631-635.	1.7	21
48	Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene, 2016, 35, 2873-2880.	2.6	21
49	RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Developmental Cell, 2021, 56, 1727-1741.e7.	3.1	21
50	Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Experimental Cell Research, 2005, 311, 96-105.	1.2	20
51	Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function. FASEB Journal, 2019, 33, 643-651.	0.2	20
52	The TRIP from ULF to ARF. Cancer Cell, 2010, 17, 317-318.	7.7	17
53	KSHV latent protein LANA2 inhibits sumo2 modification of p53. Cell Cycle, 2015, 14, 277-282.	1.3	17
54	Regulation of Ebola virus VP40 matrix protein by SUMO. Scientific Reports, 2016, 6, 37258.	1.6	17

MANUEL COLLADO

#	Article	IF	CITATIONS
55	Susceptibility of Zebrafish to Vesicular Stomatitis Virus Infection. Zebrafish, 2018, 15, 124-132.	0.5	16
56	Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget, 2015, 6, 2992-3002.	0.8	14
57	Casein kinase 2 inactivation by Mg2+, Mn2+ and Co2+ ions. Molecular and Cellular Biochemistry, 1995, 152, 1-6.	1.4	14
58	Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. Aging, 2020, 12, 17895-17901.	1.4	12
59	Context-Dependent Impact of RAS Oncogene Expression on Cellular Reprogramming to Pluripotency. Stem Cell Reports, 2019, 12, 1099-1112.	2.3	11
60	SUMOylation modulates the stability and function of PI3K-p110β. Cellular and Molecular Life Sciences, 2021, 78, 4053-4065.	2.4	11
61	Control of virus infection by tumour suppressors. Carcinogenesis, 2007, 28, 1140-1144.	1.3	9
62	Generation and characterization of the human iPSC line IDISi001-A isolated from blood cells of a CADASIL patient carrying a NOTCH3 mutation. Stem Cell Research, 2018, 28, 16-20.	0.3	9
63	BCR-ABL-Expressing Cells Transduced with the HSV-tk Gene Die by Apoptosis upon Treatment with Ganciclovir. Molecular Therapy, 2001, 3, 642-652.	3.7	7
64	Chimeras between the human immunodeficiency virus (HIV-1) Env and vaccinia virus immunogenic proteins p14 and p39 generate in mice broadly reactive antibodies and specific activation of CD8+ T cell responses to Env. Vaccine, 2000, 18, 3123-3133.	1.7	6
65	Phosphorylable tyrosine residue 162 in the double-stranded RNA-dependent kinase PKR modulates its interaction with SUMO. Scientific Reports, 2017, 7, 14055.	1.6	6
66	SOX9 Triggers Different Epithelial to Mesenchymal Transition States to Promote Pancreatic Cancer Progression. Cancers, 2022, 14, 916.	1.7	6
67	Sequence analysis of aMolluscum contagiosum virus DNA region which includes the gene encoding protein kinase 2 and other genes with unique organization. Virus Genes, 1996, 13, 19-29.	0.7	5
68	Exploring a â€~pro-senescence' approach for prostate cancer therapy by targeting PTEN. Future Oncology, 2010, 6, 687-689.	1.1	5
69	Pkd2 deletion during embryo development does not alter mesonephric programmed cell senescence. International Journal of Developmental Biology, 2018, 62, 637-640.	0.3	4
70	The Jekyll and Hyde of Senescence in Cancer: TIMP1 Controls the Switch from Tumor-Controlling to Tumor-Promoting Senescence. Cancer Cell, 2021, 39, 13-15.	7.7	3
71	Senotherapy of Cancer. Healthy Ageing and Longevity, 2020, , 85-99.	0.2	3
72	Merkel cells of human oral mucosa express the pluripotent stem cell transcription factor Sox2. Histology and Histopathology, 2020, 35, 1007-1012.	0.5	2

#	Article	IF	CITATIONS
73	Novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. Future Virology, 2007, 2, 625-629.	0.9	1
74	79: WNT16B, a new biomarker of senescent cells in vitro and in vivo, is necessary for the p53-dependent activation of p21WAF1 in cellular senescence. Bulletin Du Cancer, 2010, 97, S67.	0.6	0