Chad A Larson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2552485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Studies of Extinction Dynamics. Science, 1999, 286, 1175-1177.	12.6	90
2	The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere, 2011, 2, art33.	2.2	87
3	Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. Journal of Plankton Research, 2013, 35, 1154-1166.	1.8	77
4	Succession in Stream Biofilms is an Environmentally Driven Gradient of Stress Tolerance. Microbial Ecology, 2011, 62, 414-424.	2.8	76
5	Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology, 2012, 80, 352-362.	2.7	43
6	SPECTRAL FINGERPRINTING OF ALGAL COMMUNITIES: A NOVEL APPROACH TO BIOFILM ANALYSIS AND BIOMONITORING1. Journal of Phycology, 2005, 41, 439-446.	2.3	28
7	Iron limitation effects on nitrogen-fixing organisms with possible implications for cyanobacterial blooms. FEMS Microbiology Ecology, 2018, 94, .	2.7	25
8	Current distributions and future climateâ€driven changes in diatoms, insects and fish in U.S. streams. Global Ecology and Biogeography, 2021, 30, 63-78.	5.8	24
9	Rates of Species Accumulation and Taxonomic Diversification during Phototrophic Biofilm Development Are Controlled by both Nutrient Supply and Current Velocity. Applied and Environmental Microbiology, 2013, 79, 2054-2060.	3.1	17
10	Toxic Burdens of Freshwater Biofilms and Use as a Source Tracking Tool in Rivers and Streams. Environmental Science & Technology, 2019, 53, 11102-11111.	10.0	16
11	Iron supply constrains producer communities in stream ecosystems. FEMS Microbiology Ecology, 2015, 91, .	2.7	15
12	Niche dimensionality and herbivory control stream algal biomass via shifts in guild composition, richness, and evenness. Ecology, 2019, 100, e02831.	3.2	15
13	Biogeographical Patterns of Species Richness and Abundance Distribution in Stream Diatoms Are Driven by Climate and Water Chemistry. American Naturalist, 2018, 192, 605-617.	2.1	14
14	The number of limiting resources in the environment controls the temporal diversity patterns in the algal benthos. Microbial Ecology, 2016, 72, 64-69.	2.8	10
15	The first statewide stream macroinvertebrate bioassessment in Washington State with a relative risk and attributable risk analysis for multiple stressors. Ecological Indicators, 2019, 102, 175-185.	6.3	9
16	A Large-Scale, Multiagency Approach to Defining a Reference Network for Pacific Northwest Streams. Environmental Management, 2016, 58, 1091-1104.	2.7	6
17	Flow pulses and fine sediments degrade stream macroinvertebrate communities in King County, Washington, USA. Ecological Indicators, 2018, 93, 365-378.	6.3	4
18	Overwinter survival of crustacean diapausing cysts: Brine shrimp (Artemia franciscana) in Great Salt Lake, Utah. Limnology and Oceanography, 2019, 64, 2538-2549.	3.1	3

#	Article	IF	CITATIONS
19	The impacts of nutrient supply and imbalance on subcontinental coâ€occurrence networks and metacommunity composition of stream algae. Ecography, 2021, 44, 1109-1120.	4.5	2
20	Strong but heterogeneous distributional responses to climate change are projected for temperate and semiâ€arid stream vertebrates. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	2.0	1
21	The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach: Reply. Ecosphere, 2014, 5, 1-4.	2.2	0