Michel Thiebaut de Schotten

List of Publications by Citations

Source:

https://exaly.com/author-pdf/2552127/michel-thiebaut-de-schotten-publications-by-citations.pdf **Version:** 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,198 48 127 100 h-index citations g-index papers 162 6.52 12,614 6.4 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
127	A diffusion tensor imaging tractography atlas for virtual in vivo dissections. <i>Cortex</i> , 2008 , 44, 1105-32	3.8	1142
126	A lateralized brain network for visuospatial attention. <i>Nature Neuroscience</i> , 2011 , 14, 1245-6	25.5	703
125	Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. <i>Science</i> , 2005 , 309, 2226-8	33.3	517
124	Short frontal lobe connections of the human brain. <i>Cortex</i> , 2012 , 48, 273-91	3.8	501
123	Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. <i>Neurolmage</i> , 2011 , 54, 49-59	7.9	477
122	Monkey to human comparative anatomy of the frontal lobe association tracts. <i>Cortex</i> , 2012 , 48, 82-96	3.8	433
121	A revised limbic system model for memory, emotion and behaviour. <i>Neuroscience and Biobehavioral Reviews</i> , 2013 , 37, 1724-37	9	350
120	A novel frontal pathway underlies verbal fluency in primary progressive aphasia. <i>Brain</i> , 2013 , 136, 2619	1 -218 1.2	315
119	Left unilateral neglect as a disconnection syndrome. <i>Cerebral Cortex</i> , 2007 , 17, 2479-90	5.1	308
118	Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a "minimal common brain". <i>NeuroImage</i> , 2011 , 56, 992-1000	7.9	258
117	White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. <i>Cortex</i> , 2008 , 44, 983-95	3.8	252
116	Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection. <i>Cerebral Cortex</i> , 2014 , 24, 691-706	5.1	231
115	Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. <i>Brain Structure and Function</i> , 2016 , 221, 1751-66	4	218
114	Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. <i>Brain</i> , 2014 , 137, 2027-39	11.2	212
113	Atlas of Human Brain Connections 2012 ,		167
112	Beyond cortical localization in clinico-anatomical correlation. <i>Cortex</i> , 2012 , 48, 1262-87	3.8	164
111	Brain networks of spatial awareness: evidence from diffusion tensor imaging tractography. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2008 , 79, 598-601	5.5	163

(2016-2014)

110	The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. <i>Cortex</i> , 2014 , 56, 73-84	3.8	162
109	Learning to read improves the structure of the arcuate fasciculus. Cerebral Cortex, 2014, 24, 989-95	5.1	143
108	Brain networks of visuospatial attention and their disruption in visual neglect. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 110	3.3	140
107	The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study. <i>Neurolmage</i> , 2009 , 47, 427-34	7.9	138
106	White matter lesional predictors of chronic visual neglect: a longitudinal study. <i>Brain</i> , 2015 , 138, 746-60	11.2	136
105	Anatomical connections of the visual word form area. <i>Journal of Neuroscience</i> , 2014 , 34, 15402-14	6.6	135
104	Neural correlates of cognitive impairment in posterior cortical atrophy. <i>Brain</i> , 2011 , 134, 1464-78	11.2	130
103	Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. <i>GigaScience</i> , 2018 , 7, 1-17	7.6	122
102	White matter connections of the supplementary motor area in humans. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2014 , 85, 1377-85	5.5	117
101	From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting Disconnection Syndromes. <i>Cerebral Cortex</i> , 2015 , 25, 4812-27	5.1	102
100	Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder. <i>Neuropsychopharmacology</i> , 2014 , 39, 1547-57	8.7	102
99	DTI-MR tractography of white matter damage in stroke patients with neglect. <i>Experimental Brain Research</i> , 2011 , 208, 491-505	2.3	101
98	White matter functional connectivity as an additional landmark for dominant temporal lobectomy. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 492-5	5.5	90
97	An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. <i>Communications Biology</i> , 2019 , 2, 370	6.7	89
96	Functional segregation and integration within fronto-parietal networks. <i>NeuroImage</i> , 2017 , 146, 367-37	'5 7.9	88
95	The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. <i>Nature Communications</i> , 2019 , 10, 1417	17.4	85
94	The functional architecture of the left posterior and lateral prefrontal cortex in humans. <i>Cerebral Cortex</i> , 2008 , 18, 2460-9	5.1	85
93	Frontal networks in adults with autism spectrum disorder. <i>Brain</i> , 2016 , 139, 616-30	11.2	83

92	Traumatic brain injury and the frontal lobes: what can we gain with diffusion tensor imaging?. <i>Cortex</i> , 2012 , 48, 156-65	3.8	83
91	Visualization of disconnection syndromes in humans. <i>Cortex</i> , 2008 , 44, 1097-103	3.8	83
90	Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12295-1230	0 ^{11.5}	71
89	Attention networks and their interactions after right-hemisphere damage. <i>Cortex</i> , 2012 , 48, 654-63	3.8	64
88	Connectomic approaches before the connectome. <i>NeuroImage</i> , 2013 , 80, 2-13	7.9	60
87	Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. <i>Brain</i> , 2020 , 143, 2173-2188	11.2	58
86	Relationship Between Cortical Gyrification, White Matter Connectivity, and Autism Spectrum Disorder. <i>Cerebral Cortex</i> , 2016 , 26, 3297-309	5.1	57
85	The role of diffusion MRI in neuroscience. <i>NMR in Biomedicine</i> , 2019 , 32, e3762	4.4	55
84	Altered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography. <i>Cortex</i> , 2016 , 76, 51-62	3.8	54
83	Structural Variability Across the Primate Brain: A Cross-Species Comparison. <i>Cerebral Cortex</i> , 2018 , 28, 3829-3841	5.1	52
82	Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 2020, 105, 600-603	13.9	51
81	Frontoparietal Tracts Linked to Lateralized Hand Preference and Manual Specialization. <i>Cerebral Cortex</i> , 2018 , 28, 2482-2494	5.1	50
80	Subdivision of the occipital lobes: an anatomical and functional MRI connectivity study. <i>Cortex</i> , 2014 , 56, 121-37	3.8	50
79	Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage. <i>Neuropsychologia</i> , 2016 , 93, 407-412	3.2	47
78	Cortical control of inhibition of return: evidence from patients with inferior parietal damage and visual neglect. <i>Neuropsychologia</i> , 2012 , 50, 800-9	3.2	46
77	Mapping of visuospatial functions during brain surgery: a new tool to prevent unilateral spatial neglect. <i>Neurosurgery</i> , 2007 , 61, E1340	3.2	44
76	Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications. <i>Brain</i> , 2016 , 139, 1783-99	11.2	42
75	Rostro-caudal Architecture of the Frontal Lobes in Humans. <i>Cerebral Cortex</i> , 2017 , 27, 4033-4047	5.1	41

74	Visual neglect in posterior cortical atrophy. <i>BMC Neurology</i> , 2010 , 10, 68		40
73	Brain disconnections link structural connectivity with function and behaviour. <i>Nature</i> Communications, 2020 , 11, 5094	4	37
72	Two critical brain networks for generation and combination of remote associations. <i>Brain</i> , 2018 , 141, 217-233	2	36
71	Anosognosia for hemiplegia as a tripartite disconnection syndrome. <i>ELife</i> , 2019 , 8, 8.9		35
70	Differential default mode network trajectories in asymptomatic individuals at risk for Alzheimer disease. <i>Alzheimens and Dementia</i> , 2019 , 15, 940-950		31
69	Very Early Brain Damage Leads to Remodeling of the Working Memory System in Adulthood: A Combined fMRI/Tractography Study. <i>Journal of Neuroscience</i> , 2015 , 35, 15787-99		30
68	The anatomy of cerebral achromatopsia: a reappraisal and comparison of two case reports. <i>Cortex</i> , 2014 , 56, 138-44		29
67	Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study. <i>Cortex</i> , 2017 , 86, 290-302		28
66	Frontotemporal networks and behavioral symptoms in primary progressive aphasia. <i>Neurology</i> , 2016 , 86, 1393-1399		28
65	Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities. <i>Cerebral Cortex</i> , 2016 , 26, 915-932		27
64	Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage. Cortex, 2015 , 62, 73-88		27
63	Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. <i>Developmental Cognitive Neuroscience</i> , 2018 , 31, 11-19		26
62	Dissociating motor-speech from lexico-semantic systems in the left frontal lobe: insight from a series of 17 awake intraoperative mappings in glioma patients. <i>Brain Structure and Function</i> , 2019 , 224, 1151-1165		26
61	Anatomical predictors of successful prism adaptation in chronic visual neglect. <i>Cortex</i> , 2019 , 120, 629-643.8		22
60	Large-scale comparative neuroimaging: Where are we and what do we need?. <i>Cortex</i> , 2019 , 118, 188-202 ₃ .8		21
59	White matter microstructure of attentional networks predicts attention and consciousness functional interactions. <i>Brain Structure and Function</i> , 2018 , 223, 653-668		15
58	Connectivity-based parcellation of the macaque frontal cortex, and its relation with the cytoarchitectonic distribution described in current atlases. <i>Brain Structure and Function</i> , 2017 , 222, 1331 ⁴ 13	49	15
57	The rise of a new associationist school for lesion-symptom mapping. <i>Brain</i> , 2018 , 141, 2-4	2	14

56	Impact of literacy on the functional connectivity of vision and language related networks. <i>NeuroImage</i> , 2020 , 213, 116722	7.9	12
55	Vocabulary growth rate from preschool to school-age years is reflected in the connectivity of the arcuate fasciculus in 14-year-old children. <i>Developmental Science</i> , 2018 , 21, e12647	4.5	12
54	Effector-dependent neglect and splenial disconnection: a spherical deconvolution tractography study. <i>Experimental Brain Research</i> , 2014 , 232, 3727-36	2.3	12
53	The Superoanterior Fasciculus (SAF): A Novel White Matter Pathway in the Human Brain?. <i>Frontiers in Neuroanatomy</i> , 2019 , 13, 24	3.6	11
52	Visual brain plasticity induced by central and peripheral visual field loss. <i>Brain Structure and Function</i> , 2018 , 223, 3473-3485	4	11
51	Advanced lesion symptom mapping analyses and implementation as BCBtoolkit		10
50	Imaging evolution of the primate brain: the next frontier?. NeuroImage, 2021, 228, 117685	7.9	10
49	Influences of the early family environment and long-term vocabulary development on the structure of white matter pathways: A longitudinal investigation. <i>Developmental Cognitive Neuroscience</i> , 2020 , 42, 100767	5.5	9
48	A Lateralized Brain Network for Visuo-Spatial Attention. <i>Nature Precedings</i> , 2011 ,		8
47	Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease. <i>Network Neuroscience</i> , 2019 , 3, 635-652	5.6	7
46	Anterior Temporal Lobe Morphometry Predicts Categorization Ability. <i>Frontiers in Human Neuroscience</i> , 2018 , 12, 36	3.3	7
45	Different patterns of confabulation in left visuo-spatial neglect. <i>Experimental Brain Research</i> , 2018 , 236, 2037-2046	2.3	7
44	Mapping the principal gradient onto the corpus callosum. <i>NeuroImage</i> , 2020 , 223, 117317	7.9	7
43	White matter variability, cognition, and disorders: a systematic review. <i>Brain Structure and Function</i> , 2021 , 1	4	6
42	White matter variability, cognition, and disorders: a systematic review		6
41	Reply: Lesion network mapping: where do we go from here?. <i>Brain</i> , 2021 , 144, e6	11.2	6
40	Deformable anatomic templates embed knowledge into patient brain images: Part 1. Construction and display. <i>Journal of Computer Assisted Tomography</i> , 2012 , 36, 354-9	2.2	5
39	Asymmetry of White Matter Pathways 2010 , 177-210		5

38	Anchoring the human olfactory system within a functional gradient. <i>NeuroImage</i> , 2020 , 216, 116863	7.9	4
37	Sex-specific effects of Val158Met polymorphism on corpus callosum structure: A whole-brain diffusion-weighted imaging study. <i>Brain and Behavior</i> , 2017 , 7, e00786	3.4	4
36	Occipital Intralobar fasciculi: a description, through tractography, of three forgotten tracts. <i>Communications Biology</i> , 2021 , 4, 433	6.7	4
35	Structural brain disconnectivity mapping of post-stroke fatigue. <i>NeuroImage: Clinical</i> , 2021 , 30, 102635	5.3	4
34	Reading music and words: The anatomical connectivity of musiciansTvisual cortex. <i>NeuroImage</i> , 2020 , 212, 116666	7.9	3
33	White matter correlates of hemi-face dominance in happy and sad expression. <i>Brain Structure and Function</i> , 2020 , 225, 1379-1388	4	3
32	An ancestral anatomical and spatial bias for visually guided behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 2251-2252	11.5	3
31	One size fits all does not apply to brain lateralisation: Comment on "Phenotypes in hemispheric functional segregation? Perspectives and challenges" by Guy Vingerhoets. <i>Physics of Life Reviews</i> , 2019 , 30, 30-33	2.1	3
30	Subcortical Anatomy of the Default Mode Network: a functional and structural connectivity study		3
29	Recovery of neural dynamics criticality in personalized whole brain models of stroke		2
28	Superoanterior Fasciculus (SAF): Novel fiber tract revealed by diffusion MRI fiber tractography		2
27	The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain		2
26	The role of diffusion MRI in neuroscience		2
25	Anosognosia for theory of mind deficits: A single case study and a review of the literature. <i>Neuropsychologia</i> , 2020 , 148, 107641	3.2	2
24	Reply: Lesion network mapping predicts post-stroke behavioural deficits and improves localization. <i>Brain</i> , 2021 , 144, e36	11.2	2
23	White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. <i>Cortex</i> , 2021 , 139, 86-98	3.8	2
22	Towards metabolic disconnection - symptom mapping. <i>Brain</i> , 2020 , 143, 718-721	11.2	1
21	P2-192: ADVANCED DIFFUSION WEIGHTING IMAGING (DWI) TRACTOGRAPHY OF THE LIMBIC SYSTEM: NOVEL BIOMARKERS OF NEURODEGENERATIVE CHANGES DURING PROGRESSION/CONVERSION FROM COGNITIVE NORMALITY TO AD DEMENTIA 2014 , 10, P541-P542		1

20	IC-P-068: A SELECTIVE AGEING EFFECT ON THE FRONTAL LOBE CONNECTIONS 2014 , 10, P37-P38		1
19	Brain disconnections link structural connectivity with function and behaviour		1
18	Occipital Intralobar fasciculi and a novel description of three forgotten tracts		1
17	Recovery of balance and gait after stroke is deteriorated by confluent white matter hyperintensities: Cohort study. <i>Annals of Physical and Rehabilitation Medicine</i> , 2021 , 65, 101488	3.8	1
16	Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasi	ia	1
15	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. <i>Brain Communications</i> , 2021 , 3, fcab233	4.5	1
14	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke		1
13	White matter correlates of hemi-face dominance in happy and sad expression		1
12	Unravelling the Neural Basis of Spatial Delusions After Stroke. <i>Annals of Neurology</i> , 2021 , 89, 1181-1194	4 9.4	1
11	A neuroscientific approach to increase gender equality. <i>Nature Human Behaviour</i> , 2019 , 3, 1238-1239	12.8	1
10	Functionnectome: a framework to analyse the contribution of brain circuits to fMRI		1
9	Functionnectome as a framework to analyse the contribution of brain circuits to fMRI. <i>Communications Biology</i> , 2021 , 4, 1035	6.7	1
8	A novel stroke lesion network mapping approach: improved accuracy yet still low deficit prediction. <i>Brain Communications</i> , 2021 , 3, fcab259	4.5	0
7	Maladaptive compensation of right fusiform gyrus in developmental dyslexia: A hub-based white matter network analysis. <i>Cortex</i> , 2021 , 145, 57-66	3.8	O
6	The squirrel monkey model in clinical neuroscience. <i>Neuroscience and Biobehavioral Reviews</i> , 2021 , 128, 152-164	9	O
5	P1-243: A SELECTIVE AGEING EFFECT ON THE FRONTAL LOBE CONNECTIONS 2014 , 10, P394-P395		
4	IC-P-067: ADVANCED DIFFUSION WEIGHTING IMAGING (DWI) TRACTOGRAPHY OF THE LIMBIC SYSTEM: NOVEL BIOMARKERS OF NEURODEGENERATIVE CHANGES DURING PROGRESSION/CONVERSION FROM COGNITIVE NORMALITY TO AD DEMENTIA 2014 , 10, P37-P37		
3	New insights into neurocognition provided by brain mapping: visuospatial cognition 2011 , 155-166		

LIST OF PUBLICATIONS

- 2 White Matter **2022**, 163-177
- White Matter Variability, Cognition, and Disorders **2022**, 233-241