Matthew T Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2551674/publications.pdf Version: 2024-02-01

ΜΑΤΤΗΕΊ ΤΙΛΟΙΕ

#	Article	IF	CITATIONS
1	An immunologically active, adipose-derived extracellular matrix biomaterial for soft tissue reconstruction: concept to clinical trial. Npj Regenerative Medicine, 2022, 7, 6.	2.5	19
2	Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing. Science Advances, 2021, 7, .	4.7	22
3	Biomaterials modulation of the tumor immune environment for cancer immunotherapy. , 2021, , 195-213.		Ο
4	Two-Year Follow-Up and Remodeling Kinetics of ChonDux Hydrogel for Full-Thickness Cartilage Defect Repair in the Knee. Cartilage, 2020, 11, 447-457.	1.4	29
5	The Canary in the Coal Mine: Biomaterial Implants to Monitor Cancer Recurrence. Cancer Research, 2020, 80, 377-378.	0.4	Ο
6	Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Science Translational Medicine, 2020, 12, .	5.8	99
7	IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. Journal of Clinical Investigation, 2020, 130, 5493-5507.	3.9	119
8	A biologic scaffold–associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. Science Translational Medicine, 2019, 11, .	5.8	96
9	Divergent immune responses to synthetic and biological scaffolds. Biomaterials, 2019, 192, 405-415.	5.7	176
10	Biological scaffold–mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. Journal of Biological Chemistry, 2018, 293, 15594-15605.	1.6	14
11	Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Seminars in Immunology, 2017, 29, 14-23.	2.7	73
12	Intra-articular Injection of Urinary Bladder Matrix Reduces Osteoarthritis Development. AAPS Journal, 2017, 19, 141-149.	2.2	15
13	Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 2016, 352, 366-370.	6.0	464
14	Immunomodulation and Mobilization of Progenitor Cells by Extracellular Matrix Bioscaffolds for Volumetric Muscle Loss Treatment. Tissue Engineering - Part A, 2016, 22, 1129-1139.	1.6	63
15	Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials, 2016, 107, 1-14.	5.7	107
16	Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nature Reviews Materials, 2016, 1, .	23.3	208
17	Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nature Methods, 2015, 12, 1197-1204.	9.0	140
18	Predicting <i>In Vivo</i> Responses to Biomaterials via Combined <i>In Vitro</i> and <i>In Silico</i> Analysis. Tissue Engineering - Part C: Methods, 2015, 21, 148-159.	1.1	41

MATTHEW T WOLF

#	Article	IF	CITATIONS
19	Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 2015, 84, 208-221.	6.6	189
20	Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research - Part A, 2014, 102, 234-246.	2.1	104
21	An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Science Translational Medicine, 2014, 6, 234ra58.	5.8	384
22	ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials, 2014, 35, 8585-8595.	5.7	141
23	Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials, 2014, 35, 6838-6849.	5.7	193
24	A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials, 2012, 33, 7028-7038.	5.7	368
25	Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomaterialia, 2012, 8, 978-987.	4.1	619
26	Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials, 2012, 33, 2916-2925.	5.7	219