Laura Mabel Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2551524/publications.pdf

Version: 2024-02-01

840776 752698 26 450 11 20 citations h-index g-index papers 29 29 29 551 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity. Biomolecules, 2022, 12, 232.	4.0	28
2	Cellulose nanofibers/PVA blend polymeric beads containing in-situ prepared magnetic nanorods as dye pollutants adsorbents. International Journal of Biological Macromolecules, 2022, 209, 1211-1221.	7. 5	10
3	Tillandsia Aeranthos flowerâ€like magnetic nanostructures confined into polyvinyl alcohol beads. Journal of Applied Polymer Science, 2021, 138, 50261.	2.6	3
4	Advanced applications of green materials in nitrate, phosphate, and fluoride removal., 2021,, 423-459.		2
5	Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: Preparation, characterization and their use as arsenic removal devices. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100364.	2.9	20
6	Pesticide removal from industrial effluents using biopolymeric materials., 2020,, 359-382.		3
7	Physically-crosslinked polyvinyl alcohol composite hydrogels containing clays, carbonaceous materials and magnetic nanoparticles as fillers. Journal of Environmental Chemical Engineering, 2020, 8, 103795.	6.7	27
8	Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes. Advanced Materials Letters, 2020, 11 , 1 -5.	0.6	2
9	Engineered Nanomaterials for Emerging Contaminant Removal from Wastewater. , 2020, , 1-22.		5
10	Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices. Bioengineering, 2019, 6, 75.	3.5	33
11	Development of potentially biocompatible hydrogels with cylindrical pores prepared from polyvinyl alcohol and lowâ€molecular weight polyacrylic acid. Polymer Engineering and Science, 2019, 59, 1479-1488.	3.1	11
12	Sorption behavior of polyvinyl alcohol/bentonite hydrogels for dyes removal. Journal of Polymer Research, 2019, 26, 1.	2.4	41
13	Phantom gels towards medicine improvement: uses for magnetic device tests and enhancements on magnetic-dependent clinical techniques., 2019,, 435-456.		2
14	Effect of PAA-coated magnetic nanoparticles on the performance of PVA-based hydrogels developed to be used as environmental remediation devices. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	22
15	Acidâ€ŧreated Bentonite as filler in the development of novel composite PVA hydrogels. Journal of Applied Polymer Science, 2019, 136, 47663.	2.6	25
16	Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 28-37.	4.7	72
17	Nanocomposite Materials for Dyes Removal. , 2018, , 922-951.		13
18	Thermal properties of hydrogel-clay nano-composites. Advanced Materials Letters, 2018, 9, 505-509.	0.6	5

#	Article	IF	CITATIONS
19	Activity of immobilized metallic phthalocyanines in the multicomponent synthesis of dihydropyridine derivatives and their subsequent aromatization. Molecular Catalysis, 2017, 435, 1-12.	2.0	9
20	Ferrogels: Smart Materials for Biomedical and Remediation Applications., 2017,, 561-579.		5
21	Simple and ecofriendly synthesis of dihydropyrimidinones (thiones), dihydropyridines, and pyridines using 3â€formylchromones as substrates assisted by a recyclable Preyssler heteropolyacid. Heteroatom Chemistry, 2016, 27, 295-305.	0.7	4
22	Heteropolycompounds as catalysts for biomass product transformations. Catalysis Reviews - Science and Engineering, 2016, 58, 497-586.	12.9	51
23	Suitable Multicomponent Organic Synthesis using Heteropolycompounds as Catalysts. Mini-Reviews in Organic Chemistry, 2015, 12, 115-126.	1.3	16
24	Vanadium-Substituted Wells-Dawson Heteropolyacid as Catalyst for Liquid Phase Oxidation of 1,4-Dihydropyridine Derivative. Catalysis Letters, 2014, 144, 172-180.	2.6	8
25	P2W18O62Â \cdot 24H2O as an efficient and recyclable catalyst for the ecofriendly preparation of \hat{l}^2 -aminocrotonates. Canadian Journal of Chemistry, 2013, 91, 137-142.	1.1	2
26	Solvent-free synthesis of functionalized pyridine derivatives using Wells-Dawson heteropolyacid as catalyst. Tetrahedron Letters, 2011, 52, 4412-4416.	1.4	31