

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2551515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	19.5	486
2	Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tubeâ€inâ€Tube Carbon Nanostructure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 5113-5118.	21.0	360
3	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	19.5	207
4	MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochemistry Communications, 2011, 13, 698-700.	4.7	143
5	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	21.0	132
6	Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chemical Communications, 2011, 47, 7416.	4.1	127
7	Fully Reversible Conversion between SnO ₂ and Sn in SWNTs@SnO ₂ @PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 18612-18617.	3.1	116
8	A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chemical Communications, 2011, 47, 5238.	4.1	95
9	Sulfur- and Nitrogen-Doped, Ferrocene-Derived Mesoporous Carbons with Efficient Electrochemical Reduction of Oxygen. ACS Applied Materials & Interfaces, 2013, 5, 12594-12601.	8.0	81
10	Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. Journal of Materials Chemistry, 2012, 22, 13002.	6.7	71
11	Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochimica Acta, 2019, 307, 118-128.	5.2	70
12	Reserving Interior Void Space for Volume Change Accommodation: An Example of Cableâ€Like MWNTs@SnO ₂ @C Composite for Superior Lithium and Sodium Storage. Advanced Science, 2015, 2, 1500097.	11.2	69
13	Yolk–shell Fe ₂ O ₃ ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale, 2015, 7, 9520-9525.	5.6	67
14	A novel quinone-based polymer electrode for high performance lithium-ion batteries. Science China Materials, 2016, 59, 6-11.	6.3	67
15	A Yolk–Shell Fe ₃ O ₄ @C Composite as an Anode Material for Highâ€Rate Lithium Batteries. ChemPlusChem, 2012, 77, 748-751.	2.8	61
16	Spinel MFe2O4 (M = Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li–O2 batteries. Journal of Materials Chemistry A, 2014, 2, 10257.	10.3	57
17	Encapsulating porous SnO ₂ into a hybrid nanocarbon matrix for long lifetime Li storage. Journal of Materials Chemistry A, 2017, 5, 25609-25617.	10.3	57
18	A nanocomposite of SnO2 and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries. RSC Advances, 2011, 1, 852.	3.6	56

Υι Ζήλο

#	Article	IF	CITATIONS
19	Enhancing the Charge Transportation Ability of Yolk–Shell Structure for High-Rate Sodium and Potassium Storage. ACS Nano, 2020, 14, 4463-4474.	14.6	56
20	Polycrystalline zinc stannate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14033-14038.	10.3	53
21	In situ generation of Li2FeSiO4 coating on MWNT as a high rate cathode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 18797.	6.7	52
22	Improving the Performance of Lithium–Sulfur Batteries by Employing Polyimide Particles as Hosting Matrixes. ACS Applied Materials & Interfaces, 2016, 8, 7464-7470.	8.0	52
23	An Effective Integrated Design for Enhanced Cathodes of Ni Foam-Supported Pt/Carbon Nanotubes for Li-O ₂ Batteries. ACS Applied Materials & Interfaces, 2014, 6, 12479-12485.	8.0	50
24	Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network. Journal of Materials Chemistry A, 2013, 1, 3856.	10.3	45
25	Yolk–shell NiS _x @C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. Journal of Materials Chemistry A, 2019, 7, 18932-18939.	10.3	45
26	A Partial Sulfuration Strategy Derived Multiâ€Yolk–Shell Structure for Ultra‧table K/Na/Liâ€ion Storage. Advanced Materials, 2021, 33, e2100837.	21.0	45
27	Coaxial MWNTs@MnO2 confined in conducting PPy for kinetically efficient and long-term lithium ion storage. Electrochimica Acta, 2013, 111, 165-171.	5.2	42
28	Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+. Journal of Materials Chemistry, 2011, 21, 19101.	6.7	40
29	Encapsulating SnS2 nanosheets into hollow carbon sphere: A yolk-shell SnS2@C composite with enhanced sodium storage performance. Electrochimica Acta, 2018, 270, 1-8.	5.2	37
30	A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale, 2018, 10, 7999-8008.	5.6	35
31	A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. Journal of Materials Chemistry A, 2020, 8, 8002-8009.	10.3	35
32	Synthesis and Structure of KPbBP ₂ O ₈ – A Congruent Melting Borophosphate with Nonlinear Optical Properties. European Journal of Inorganic Chemistry, 2013, 2013, 3185-3190.	2.0	33
33	Lithium storage in single-walled carbon nanotubes. Electrochemistry Communications, 2010, 12, 592-595.	4.7	31
34	Ammonia Defective Etching and Nitrogen-Doping of Porous Carbon toward High Exposure of Heme-Derived Fe–N _{<i>x</i>} Site for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 551-560.	6.7	29
35	A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials. Nanoscale Research Letters, 2011, 6, 71.	5.7	27
36	Direct growth of LiMn2O4 on carbon nanotubes as cathode materials for lithium ion batteries. Materials Letters, 2012, 68, 197-200.	2.6	21

Υι Ζηαο

#	Article	IF	CITATIONS
37	Direct synthesis of iron oxide nanoparticles on an iron current collector as binder-free anode materials for lithium-ion batteries. Materials Letters, 2012, 81, 105-107.	2.6	19
38	A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries. Journal of Energy Chemistry, 2014, 23, 376-382.	12.9	18
39	Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon, 2018, 128, 46-53.	10.3	18
40	Fe2O3 nanoparticles coated on ferrocene-encapsulated single-walled carbon nanotubes as stable anode materials for long-term cycling. RSC Advances, 2012, 2, 4205.	3.6	16
41	Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping. Energy and Environmental Materials, 2022, 5, 944-953.	12.8	15
42	Conductive Porous Network of Metal–Organic Frameworks Derived Cobaltâ€Nitrogenâ€doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries. ChemCatChem, 2018, 10, 1336-1343.	3.7	14
43	Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. Materials Science and Engineering C, 2021, 120, 111797.	7.3	14
44	Lithium Storage Performance Boosted via Delocalizing Charge in Zn <i>_x</i> Co _{1â^'} <i>_x</i> PS ₃ /CoS ₂ of 2D/3D Heterostructure. Small, 2022, 18, e2104295.	10.0	13
45	Rational design of multi-walled carbon nanotube@hollow Fe ₃ O ₄ @C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology, 2019, 30, 465402.	2.6	12
46	Single-walled carbon nanohorns with unique horn-shaped structures as a scaffold for lithium–sulfur batteries. RSC Advances, 2014, 4, 28636-28639.	3.6	10
47	A simple integrated design and manufacture by electrospinning of stabilized lithium battery tin-based anodes. RSC Advances, 2013, 3, 19251.	3.6	8
48	Surface-confinement assisted synthesis of nitrogen-rich single atom Feâ^'N/C electrocatalyst with dual nitrogen sources for enhanced oxygen reduction reaction. Nanotechnology, 2021, 32, 305402.	2.6	7
49	Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. , 2022, 138, 212868.		7
50	Iron encapsulated in single-walled carbon nanotubes for obtaining the evidence of improved coulombic efficiency and improving the lithium battery performance of ZnO anodes. RSC Advances, 2018, 8, 11566-11573.	3.6	6
51	Coaxial MWNTs@MnCo2O4 wrapped in conducting graphene for enhanced lithium ion storage. Journal of Materials Science, 2021, 56, 9356-9367.	3.7	4
52	Crystalline Intermarriage of Hybrid Organic–Inorganic Halide Perovskite and Epoxide: Enhanced Stability and Modified Optical Properties. ACS Applied Energy Materials, 2021, 4, 13550-13555.	5.1	4
53	Electrochemical Thin Film Deposition of Copper(I) Halides in Aqueous Solution: Substrate Extension and Structure Transformation. Advanced Materials Interfaces, 2022, 9, .	3.7	4
54	Boosting the lithium and sodium storage performance of graphene-based composite via pore engineering and surface protection. Nanotechnology, 2021, 32, 105402.	2.6	2

#	Article	IF	CITATIONS
55	An Fe–N co-doped tube-in-tube carbon nanostructure used as an efficient catalyst for the electrochemical oxygen reduction reaction. Nanotechnology, 2019, 30, 485705.	2.6	0
56	Se ₄ P ₄ nanoparticles confined within porous carbon as a lithium-ion battery anode with superior electrochemical performance. Nanotechnology, 2021, 32, 505713.	2.6	0