Michael Tobler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EVOLUTION IN EXTREME ENVIRONMENTS: REPLICATED PHENOTYPIC DIFFERENTIATION IN LIVEBEARING FISH INHABITING SULFIDIC SPRINGS. Evolution; International Journal of Organic Evolution, 2011, 65, 2213-2228.	2.3	123
2	TOXIC HYDROGEN SULFIDE AND DARK CAVES: PHENOTYPIC AND GENETIC DIVERGENCE ACROSS TWO ABIOTIC ENVIRONMENTAL GRADIENTS IN <i>POECILIA MEXICANA</i> . Evolution; International Journal of Organic Evolution, 2008, 62, 2643-2659.	2.3	122
3	Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles, 2006, 10, 577-585.	2.3	116
4	Sexual harassment in live-bearing fishes (Poeciliidae): comparing courting and noncourting species. Behavioral Ecology, 2007, 18, 680-688.	2.2	83
5	Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Molecular Ecology, 2011, 20, 342-356.	3.9	83
6	Survival in an extreme habitat: the roles of behaviour and energy limitation. Die Naturwissenschaften, 2007, 94, 991-996.	1.6	77
7	Testing the ecological consequences of evolutionary change using elements. Ecology and Evolution, 2014, 4, 528-538.	1.9	75
8	Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nature Communications, 2014, 5, 3873.	12.8	75
9	Natural and sexual selection against immigrants maintains differentiation among microâ€allopatric populations. Journal of Evolutionary Biology, 2009, 22, 2298-2304.	1.7	72
10	Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide–Rich Environments. Molecular Biology and Evolution, 2016, 33, 1419-1434.	8.9	69
11	Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Molecular Ecology, 2006, 16, 967-976.	3.9	68
12	Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: <i>Xiphophorus</i>). Journal of Evolutionary Biology, 2012, 25, 1800-1814.	1.7	66
13	Colonisation of toxic environments drives predictable lifeâ€history evolution in livebearing fishes (Poeciliidae). Ecology Letters, 2014, 17, 65-71.	6.4	61
14	GENETIC DIFFERENTIATION AND SELECTION AGAINST MIGRANTS IN EVOLUTIONARILY REPLICATED EXTREME ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2013, 67, 2647-2661.	2.3	58
15	Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Molecular Ecology, 2018, 27, 843-859.	3.9	56
16	Brain size variation in extremophile fish: local adaptation versus phenotypic plasticity. Journal of Zoology, 2015, 295, 143-153.	1.7	55
17	The Evolutionary Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 239-262.	8.3	54
18	Divergence in trophic ecology characterizes colonization of extreme habitats. Biological Journal of the Linnean Society, 0, 95, 517-528.	1.6	51

#	Article	IF	CITATIONS
19	Environmental variation, hybridization, and phenotypic diversification in Cuatro Ciénegas pupfishes. Journal of Evolutionary Biology, 2010, 23, 1475-1489.	1.7	49
20	Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evolutionary Biology, 2010, 10, 256.	3.2	48
21	The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs. PLoS ONE, 2013, 8, e71069.	2.5	47
22	Parasites in sexual and asexual mollies (Poecilia , Poeciliidae, Teleostei): a case for the Red Queen?. Biology Letters, 2005, 1, 166-168.	2.3	46
23	Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16424-16430.	7.1	44
24	Predation of a cave fish (<i>Poecilia mexicana</i> , Poeciliidae) by a giant waterâ€bug (<i>Belostoma</i> ,) Tj ETQo	0.00 rgB	[/Qverlock]
25	Influence of black spot disease on shoaling behaviour in female western mosquitofish, Gambusia affinis (Poeciliidae, Teleostei). Environmental Biology of Fishes, 2007, 81, 29-34.	1.0	42
26	Does a predatory insect contribute to the divergence between cave- and surface-adapted fish populations?. Biology Letters, 2009, 5, 506-509.	2.3	41
27	Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish. Die Naturwissenschaften, 2010, 97, 769-774.	1.6	39
28	Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology, 2011, 92, 2056-2062.	3.2	39
29	Predator-induced changes of female mating preferences: innate and experiential effects. BMC Evolutionary Biology, 2011, 11, 190.	3.2	39
30	Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. Diversity, 2014, 6, 597-632.	1.7	39
31	Two endemic and endangered fishes, <i>Poecilia sulphuraria</i> (Alvarez, 1948) and <i>Gambusia eurystoma</i> Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat. Journal of Fish Biology, 2008, 72, 523-533.	1.6	38
32	From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Global Change Biology, 2016, 22, 2440-2450.	9.5	38
33	Does divergence in female mate choice affect male size distributions in two cave fish populations?. Biology Letters, 2008, 4, 452-454.	2.3	37
34	Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide–rich springs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
35	Male-biased predation of a cave fish by a giant water bug. Die Naturwissenschaften, 2008, 95, 775-779.	1.6	35
36	Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish. Physiological and Biochemical Zoology, 2015, 88, 371-383.	1.5	34

#	Article	IF	CITATIONS
37	Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Molecular Phylogenetics and Evolution, 2016, 103, 230-244.	2.7	34
38	H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 175, 7-14.	1.8	33
39	Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evolutionary Biology, 2016, 16, 136.	3.2	33
40	The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Molecular Ecology, 2017, 26, 6384-6399.	3.9	33
41	Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology, 2014, 27, 960-974.	1.7	32
42	Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae): reduced fecundity and reduced plasticity in a population of cave mollies. Environmental Biology of Fishes, 2009, 84, 89-94.	1.0	31
43	Reduced opsin gene expression in a cave-dwelling fish. Biology Letters, 2010, 6, 98-101.	2.3	31
44	Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish. Acta Oecologica, 2007, 31, 270-275.	1.1	30
45	Convergent Patterns of Body Shape Differentiation in Four Different Clades of Poeciliid Fishes Inhabiting Sulfide Springs. Evolutionary Biology, 2011, 38, 412-421.	1.1	30
46	Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia,) Tj ETQq0 0 0 rgBT /C	verlock 1(1.2) Tf 50 382 T 28
47	Black spots and female association preferences in a sexual/asexual mating complex (Poecilia,) Tj ETQq1 1 0.7843	14.rgBT /(1.4	Dvgrlock 10 T
48	A new and morphologically distinct population of cavernicolous Poecilia mexicana (Poeciliidae:) Tj ETQq0 0 0 rgB	T /Oyerloc 1.0	k 10 Tf 50 30
49	Comparison of parasite communities in native and introduced populations of sexual and asexual mollies of the genus Poecilia. Journal of Fish Biology, 2005, 67, 1072-1082.	1.6	26
50	Genomic resources for a model in adaptation and speciation research: characterization of the Poecilia mexicana transcriptome. BMC Genomics, 2012, 13, 652.	2.8	25
51	Polymorphic MHC loci in an asexual fish, the amazon molly (<i>Poecilia formosa</i> ; Poeciliidae). Molecular Ecology, 2008, 17, 5220-5230.	3.9	24
52	Dietary niche overlap in sympatric asexual and sexual livebearing fishes Poecilia spp Journal of Fish Biology, 2011, 79, 1760-1773.	1.6	24
53	Reduction of the association preference for conspecifics in cave-dwelling Atlantic mollies, Poecilia mexicana. Behavioral Ecology and Sociobiology, 2006, 60, 794-802.	1.4	23
54	A novel, sexually selected trait in poeciliid fishes: female preference for mustache-like, rostral filaments in male Poecilia sphenops. Behavioral Ecology and Sociobiology, 2010, 64, 1849-1855.	1.4	23

#	Article	IF	CITATIONS
55	Relationships between spatioâ€ŧemporal environmental and genetic variation reveal an important influence of exogenous selection in a pupfish hybrid zone. Molecular Ecology, 2012, 21, 1209-1222.	3.9	23
56	Ecological divergence and conservatism: spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus). BMC Evolutionary Biology, 2016, 16, 44.	3.2	23
57	Hydrogen Sulfide-Toxic Habitats. , 2015, , 137-159.		23
58	Upstream effects of a reservoir on fish assemblages 45 years following impoundment. Journal of Fish Biology, 2013, 82, 1659-1670.	1.6	21
59	Complexities of gene expression patterns in natural populations of an extremophile fish (<i>Poecilia) Tj ETQq1</i>	1 0.784314	rgBT /Overlo
60	A morphological gradient revisited: cave mollies vary not only in eye size. Environmental Biology of Fishes, 2009, 86, 285-292.	1.0	20
61	Equal fecundity in asexual and sexual mollies (Poecilia). Environmental Biology of Fishes, 2010, 88, 201-206.	1.0	20
62	Costly interactions between the sexes: combined effects of male sexual harassment and female choice?. Behavioral Ecology, 2011, 22, 723-729.	2.2	20
63	Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation. Ecology and Evolution, 2017, 7, 4336-4346.	1.9	20
64	Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integrative and Comparative Biology, 2019, 59, 900-911.	2.0	20
65	Convergent changes in the trophic ecology of extremophile fish along replicated environmental gradients. Freshwater Biology, 2015, 60, 768-780.	2.4	19
66	microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. Journal of Evolutionary Biology, 2021, 34, 977-988.	1.7	19
67	Expanding the horizon: the Red Queen and potential alternatives. Canadian Journal of Zoology, 2008, 86, 765-773.	1.0	18
68	Adaptive, but not conditionâ€dependent, body shape differences contribute to assortative mating preferences during ecological speciation. Evolution; International Journal of Organic Evolution, 2016, 70, 2809-2822.	2.3	18
69	Sex-specific evolution during the diversification of live-bearing fishes. Nature Ecology and Evolution, 2017, 1, 1185-1191.	7.8	18
70	Convergent evolution of reduced energy demands in extremophile fish. PLoS ONE, 2017, 12, e0186935.	2.5	18
71	Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome, 2018, 61, 273-286.	2.0	18

4.0

18

Local ancestry analysis reveals genomic convergence in extremophile fishes. Philosophical
Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180240.

#	Article	IF	CITATIONS
73	Subterranean Fishes of Mexico (Poecilia mexicana, Poeciliidae). , 2010, , 281-330.		17
74	Feeding efficiency and food competition in coexisting sexual and asexual livebearing fishes of the genus Poecilia. Environmental Biology of Fishes, 2011, 90, 197-205.	1.0	16
75	A New Species of Boubou (Malaconotidae: <i>Laniarius</i>) From the Albertine Rift. Auk, 2010, 127, 678-689.	1.4	15
76	Invasion of rusty crayfish, Orconectes rusticus, in the United States: niche shifts and potential future distribution. Journal of Crustacean Biology, 2013, 33, 293-300.	0.8	14
77	Evolution of body shape in differently coloured sympatric congeners and allopatric populations of <scp>L</scp> ake <scp>M</scp> alawi's rockâ€dwelling cichlids. Journal of Evolutionary Biology, 2014, 27, 826-839.	1.7	14
78	Concordant changes in gene expression and nucleotides underlie independent adaptation to hydrogen-sulfide-rich environments. Genome Biology and Evolution, 2018, 10, 2867-2881.	2.5	14
79	Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biology Letters, 2019, 15, 20190554.	2.3	14
80	Sperm production in an extremophile fish, the cave molly (Poecilia mexicana, Poeciliidae, Teleostei). Aquatic Ecology, 2008, 42, 685-692.	1.5	13
81	Toxic hydrogen sulphide shapes brain anatomy: a comparative study of sulphideâ€adapted ecotypes in the <i>Poecilia mexicana</i> complex. Journal of Zoology, 2016, 300, 163-176.	1.7	13
82	Using replicated evolution in extremophile fish to understand diversification in elemental composition and nutrient excretion. Freshwater Biology, 2016, 61, 158-171.	2.4	13
83	Feigning death in the Central American cichlid Parachromis friedrichsthalii Journal of Fish Biology, 2005, 66, 877-881.	1.6	12
84	Threatened fishes of the world: Poecilia sulphuraria (Alvarez, 1948) (Poeciliidae). Environmental Biology of Fishes, 2009, 85, 333-334.	1.0	12
85	Examination of boldness traits in sexual and asexual mollies (Poecilia latipinna, P. formosa). Acta Ethologica, 2011, 14, 77-83.	0.9	12
86	Habitat use by two extremophile, highly endemic, and critically endangered fish species (<i>Gambusia) Tj ETQq Freshwater Ecosystems, 2016, 26, 1155-1167.</i>	0 0 0 rgBT 2.0	/Overlock 107 12
87	Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams. Microbial Ecology, 2019, 77, 559-573.	2.8	12
88	Photophilic behaviour in surface- and cave-dwelling Atlantic mollies Poecilia mexicana (Poeciliidae). Journal of Fish Biology, 2007, 71, 1225-1231.	1.6	11
89	Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae,) Tj ETQq1 1 	0.784314	rgBT /Overloc
90	Crayfishes (Decapoda : Cambaridae) of Oklahoma: identification, distributions, and natural history . Zootaxa, 2013, 3717, 101.	0.5	10

#	Article	IF	CITATIONS
91	Environmental heterogeneity generates opposite gene-by-environment interactions for two fitness-related traits within a population. Evolution; International Journal of Organic Evolution, 2015, 69, 541-550.	2.3	10
92	Annual variation of community biomass is lower in more diverse stream fish communities. Oikos, 2011, 120, 582-590.	2.7	9
93	Variation in Melanism and Female Preference in Proximate but Ecologically Distinct Environments. Ethology, 2014, 120, 1090-1100.	1.1	9
94	An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish. Biology Letters, 2011, 7, 229-232.	2.3	8
95	Genomeâ€scale data reveal that endemic Poecilia populations from small sulphidic springs display no evidence of inbreeding. Molecular Ecology, 2017, 26, 4920-4934.	3.9	8
96	Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. Journal of Evolutionary Biology, 2020, 33, 512-523.	1.7	8
97	Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (<i>Gambusia affinis</i>). Molecular Ecology, 2022, 31, 1527-1542.	3.9	8
98	Threatened fishes of the world: Gambusia eurystoma Miller, 1975 (Poeciliidae). Environmental Biology of Fishes, 2009, 85, 251-251.	1.0	7
99	Population Structure, Habitat Use, and Diet of Giant Waterbugs in a Sulfidic Cave. Southwestern Naturalist, 2013, 58, 420-426.	0.1	7
100	Phylogeography and species delimitation in convict cichlids (Cichlidae: <i>Amatitlania</i>): implications for taxonomy and Plio-Pleistocene evolutionary history in Central America. Biological Journal of the Linnean Society, 2016, , .	1.6	7
101	Spatiotemporal environmental heterogeneity and the maintenance of the tailspot polymorphism in the variable platyfish (<i>Xiphophorus variatus</i>). Evolution; International Journal of Organic Evolution, 2016, 70, 408-419.	2.3	7
102	Body shape variation in two species of darters (Etheostoma , Percidae) and its relation to the environment. Ecology of Freshwater Fish, 2017, 26, 4-18.	1.4	7
103	Three new species of <i>Stiphrornis</i> (Aves: Muscicapidae) from the Afro-tropics, with a molecular phylogenetic assessment of the genus. Systematics and Biodiversity, 2017, 15, 87-104.	1.2	7
104	Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. Journal of Evolutionary Biology, 2018, 31, 722-734.	1.7	7
105	Temperature effects on performance and physiology of two prairie stream minnows. , 2019, 7, coz063.		7
106	Twelve new microsatellite loci for the sulphur molly (Poecilia sulphuraria) and the related Atlantic molly (P. mexicana). Conservation Genetics Resources, 2012, 4, 935-937.	0.8	6
107	Extremophile Fishes: An Integrative Synthesis. , 2015, , 279-296.		6
108	Differences in resource assimilation between the unisexual Amazon molly, Poecilia formosa (Poeciliidae) and its sexual host (Poecilia latipinna). Environmental Biology of Fishes, 2014, 97, 875-880.	1.0	5

#	Article	IF	CITATIONS
109	Extremophile Fishes: An Introduction. , 2015, , 1-7.		5
110	Swimming in polluted waters. Science, 2016, 354, 1232-1233.	12.6	5
111	Detection of changes in mitochondrial hydrogen sulfide <i>i n vivo</i> in the fish model <i>Poecilia mexicana</i> (Poeciliidae). Biology Open, 2019, 8, .	1.2	5
112	Amazon mollies. Current Biology, 2007, 17, R536-R537.	3.9	4
113	Correlated divergence of female and male genitalia in replicated lineages with ongoing ecological speciation. Evolution; International Journal of Organic Evolution, 2019, 73, 1200-1212.	2.3	4
114	Natural history and trophic ecology of three populations of the Mexican cavefish, Astyanax mexicanus. Environmental Biology of Fishes, 0, , 1.	1.0	4
115	Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish. Molecular Ecology, 2022, 31, 946-958.	3.9	3
116	Morphological variation in vanishing Mexican desert fishes of the genus <i>Characodon</i> (Goodeidae). Journal of Fish Biology, 2014, 84, 283-296.	1.6	2
117	Complex patterns of genetic and phenotypic divergence in populations of the Lake Malawi cichlid Maylandia zebra. Hydrobiologia, 2019, 832, 135-151.	2.0	1
118	Höhlenfische: Und die im Dunkeln sieht man doch Biologie in Unserer Zeit, 2008, 38, 280-280.	0.2	0
119	Genetic and morphological divergence among Gravel Bank Grasshoppers, Chorthippus pullus (Acrididae), from contrasting environments. Organisms Diversity and Evolution, 2010, 10, 381-395.	1.6	0