Ranjit Thakuria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550290/publications.pdf Version: 2024-02-01

Ρανιίτ Τμακιιρία

#	Article	IF	CITATIONS
1	Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 101-125.	5.2	501
2	The Nature and Applications of π–π Interactions: A Perspective. Crystal Growth and Design, 2019, 19, 523-528.	3.0	237
3	Conformational and Synthon Polymorphism in Furosemide (Lasix). Crystal Growth and Design, 2010, 10, 1979-1989.	3.0	125
4	Drug‑Drug and Drug‑Nutraceutical Cocrystal/Salt as Alternative Medicine for Combination Therapy: A Crystal Engineering Approach. Crystals, 2018, 8, 101.	2.2	111
5	Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy. Crystal Growth and Design, 2010, 10, 3931-3941.	3.0	97
6	Highly soluble olanzapinium maleate crystalline salts. CrystEngComm, 2011, 13, 1759.	2.6	70
7	An Investigation of the Causes of Cocrystal Dissociation at High Humidity. Journal of Pharmaceutical Sciences, 2014, 103, 2859-2864.	3.3	67
8	Olanzapinium Salts, Isostructural Solvates, and Their Physicochemical Properties. Crystal Growth and Design, 2013, 13, 3672-3680.	3.0	66
9	Efficient Access to Imidazo[1,2- <i>a</i>]pyridines/pyrazines/pyrimidines via Catalyst-Free Annulation Reaction under Microwave Irradiation in Green Solvent. ACS Combinatorial Science, 2018, 20, 164-171.	3.8	51
10	Crystalline Multicomponent Solids: An Alternative for Addressing the Hygroscopicity Issue in Pharmaceutical Materials. Crystal Growth and Design, 2020, 20, 6245-6265.	3.0	45
11	Use of Inâ€Situ Atomic Force Microscopy to Follow Phase Changes at Crystal Surfaces in Real Time. Angewandte Chemie - International Edition, 2013, 52, 10541-10544.	13.8	40
12	Crystal Structures of Pyrogallol, Its Hydrate, and Stable Multiple <i>Z</i> ′ Cocrystals with N-Heterocycles Containing Metastable Conformers of Pyrogallol. Crystal Growth and Design, 2012, 12, 3944-3953.	3.0	38
13	Silver(I) complexes of N-4-halophenyl-N′-4-pyridyl ureas. Isostructurality, ureaâ<⁻nitrate hydrogen bonding, and Agâ<⁻halogen interaction. CrystEngComm, 2008, 10, 1891.	2.6	37
14	Crystal structure landscape of ethenzamide: a physicochemical property study. CrystEngComm, 2017, 19, 826-833.	2.6	37
15	Cocrystal Dissociation under Controlled Humidity: A Case Study of Caffeine–Glutaric Acid Cocrystal Polymorphs. Organic Process Research and Development, 2019, 23, 845-851.	2.7	34
16	Polymorphic form IV of olanzapine. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o461-o463.	0.4	32
17	lodine/ <i>tert</i> â€Butyl Hydroperoxideâ€Mediated Reaction of Indoles with Dimethylformamide/Dimethylacetamide to Synthesize Bis―and Tris(indolyl)methanes. ChemistrySelect, 2017, 2, 140-146.	1.5	32
18	Pharmaceutical cocrystals and a nitrate salt of voriconazole. CrystEngComm, 2014, 16, 4722-4731.	2.6	31

Ranjit Thakuria

#	Article	IF	CITATIONS
19	Mechanochemical synthesis of drug–drug and drug–nutraceutical multicomponent solids of olanzapine. CrystEngComm, 2020, 22, 1120-1130.	2.6	28
20	Mechanochemical Synthesis of Olanzapine Salts and Their Hydration Stability Study Using Powder X-ray Diffraction. Crystal Growth and Design, 2018, 18, 2138-2150.	3.0	27
21	Olanzapine Salts and Diversity in Molecular Packing. Crystal Growth and Design, 2016, 16, 1047-1055.	3.0	26
22	Synthesis, structure, topology and magnetic properties of new coordination polymers based on 5(–Br/–COOH)-substituted nicotinic acid. CrystEngComm, 2014, 16, 5244-5256.	2.6	25
23	Polymorphism and isostructurality in sulfonylhydrazones. CrystEngComm, 2014, 16, 4681-4690.	2.6	24
24	Preparation of Pyrazinamide Eutectics versus Cocrystals Based on Supramolecular Synthon Variations. Crystal Growth and Design, 2018, 18, 6640-6651.	3.0	24
25	Crystal structures of mirtazapine molecular salts. CrystEngComm, 2011, 13, 3232.	2.6	23
26	Supramolecular networks of a H-shaped aromatic phenolhost. New Journal of Chemistry, 2010, 34, 623-636.	2.8	22
27	Solvent Dependent Formation of Metallogels and Single-Crystal MOFs by La(III) and Ce(III) Connectors and 3,5-Pyridinedicarboxylate. Crystal Growth and Design, 2014, 14, 2714-2719.	3.0	21
28	Mechanosynthesis, Characterization, and Physicochemical Property Investigation of a Favipiravir Cocrystal with Theophylline and GRAS Coformers. Crystal Growth and Design, 2021, 21, 4417-4425.	3.0	21
29	First-line antituberculosis drug, pyrazinamide, itsÂpharmaceutically relevant cocrystals and a salt. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 1007-1016.	1.1	20
30	Effect of solvent polarity in mechanochemistry: preparation of a conglomerate <i>vs.</i> racemate. Chemical Communications, 2019, 55, 10900-10903.	4.1	20
31	I2/TBHP/cyclohexanone a novel catalyst system for the oxidative dearomatization of indoles to indolin-3-ones at room temperature under solvent-free condition. Catalysis Communications, 2018, 106, 68-72.	3.3	17
32	Guest Control in the Self-Assembly of H-Shaped Host to Cyclopentanoid (5, ₄ ³) Net. Crystal Growth and Design, 2008, 8, 1471-1473.	3.0	16
33	l-Proline-catalyzed regioselective C1 arylation of tetrahydroisoquinolines through a multicomponent reaction under solvent-free conditions. Organic and Biomolecular Chemistry, 2020, 18, 6514-6518.	2.8	16
34	Mechanochemistry as an emerging tool for the preparation of sustained release urea cocrystals as a nitrogen source. CrystEngComm, 2022, 24, 1679-1689.	2.6	13
35	Comparison of surface techniques for the discrimination of polymorphs. CrystEngComm, 2016, 18, 5296-5301.	2.6	12
36	Transition metal and base free coupling of N-tosylhydrazones with 1,3-dicarbonyl compound. Tetrahedron Letters, 2017, 58, 1132-1136.	1.4	11

Ranjit Thakuria

#	Article	IF	CITATIONS
37	A readily accessible porous organic polymer facilitates high-yielding Knoevenagel condensation at room temperature both in water and under solvent-free mechanochemical conditions. Catalysis Communications, 2021, 154, 106304.	3.3	9
38	Mechanochemical Synthesis of Polymorphic Urea â‹â€‰Adipic Acid Cocrystal as a Sustainedâ€Release Niti Source. ChemSusChem, 2022, 15, e202102445.	rogen 6.8	9
39	Soot-Based Reduced Graphene Quantum Dot/Hemin Conjugate for Favipiravir Sensing. ACS Applied Nano Materials, 2021, 4, 13927-13937.	5.0	8
40	Molecular networks. Design and serendipity. CrystEngComm, 2008, 10, 1735.	2.6	6
41	In(OTf)3 catalyzed reductive etherification of 2-aryloxybenzaldehydes and 2-(arylthio)benzaldehydes. Tetrahedron Letters, 2019, 60, 150955.	1.4	6
42	Stimuli-responsive aggregation-induced fluorescence in a series of biphenyl-based Knoevenagel products: effects of substituent active methylene groups on ï€â€"ï€ interactions. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 775-783.	1.1	6
43	Blonanserin HCl salt and its monohydrate. CrystEngComm, 2012, 14, 2367-2372.	2.6	5
44	Open Flask, Clean and Practical Protocol for Diastereoselective Syntheses of Oxindole Containing Phosphinoyl Compounds under Catalystâ€Free and Solventâ€Free Conditions. ChemistrySelect, 2018, 3, 3221-3224.	1.5	5
45	Stereoselective synthesis of 9-vinyl substituted unsymmetrical xanthenes and thioxanthenes. Tetrahedron Letters, 2020, 61, 152347.	1.4	5
46	Coordination polymers of 5,5â€2-dithiobis(2-nitrobenzoic acid): Synthesis, structure and topology. Inorganica Chimica Acta, 2015, 426, 55-63.	2.4	4
47	Mechanosynthesis of Eutectics of Antiâ€Inflammatory Drug Ethenzamide – A Comparison with Analogous Cocrystals. Chemistry Methods, 2021, 1, 408-414.	3.8	3
48	A revisit to the multi-component reaction of indole, aldehyde, and N-substituted aniline catalyzed by PMA–SiO2. Monatshefte Für Chemie, 2018, 149, 2245-2252.	1.8	2
49	Crystal surface defects as possible origins of cocrystal dissociation. CrystEngComm, 2022, 24, 5031-5035.	2.6	2
50	Colorimetric detection of fluoride ions in aqueous medium using thiourea derivatives: a transition metal ion assisted approach. Dalton Transactions, 2021, 50, 15287-15295.	3.3	1
51	Single Crystal X-Ray Diffraction in Structure Elucidation of Arborinine from Glycosmis pentaphylla. Natural Products Journal, 2017, 7, .	0.3	0