David M Thal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nature Chemical Biology, 2022, 18, 109-115.	8.0	40
2	Biased Profile of Xanomeline at the Recombinant Human M ₄ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1206-1218.	3.5	6
3	P598. Exploring the Molecular Determinants for Functional Selectivity of the Antipsychotic Xanomeline at Muscarinic Acetylcholine Receptors. Biological Psychiatry, 2022, 91, S331.	1.3	0
4	The P2X1 receptor as a therapeutic target. Purinergic Signalling, 2022, 18, 421-433.	2.2	6
5	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e3001295.	5.6	41
6	Acetylcholine receptors (muscarinic) in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
7	Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2021, 12, 3112-3123.	3.5	6
8	Acetylcholine receptors (muscarinic) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
9	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	27.8	84
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
11	Crystal structure of the M ₅ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26001-26007.	7.1	48
12	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	27.8	263
13	The action of a negative allosteric modulator at the dopamine D2 receptor is dependent upon sodium ions. Scientific Reports, 2018, 8, 1208.	3.3	16
14	The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.	4.4	26
15	Recent advances in the determination of G protein-coupled receptor structures. Current Opinion in Structural Biology, 2018, 51, 28-34.	5.7	51
16	Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. Journal of General Physiology, 2018, 150, 1360-1372.	1.9	38
17	Structural insights into G-protein-coupled receptor allostery. Nature, 2018, 559, 45-53.	27.8	255
18	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	27.8	274

DAVID M THAL

#	Article	IF	CITATIONS
19	Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 2017, 168, 867-877.e13.	28.9	237
20	Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.	27.8	424
21	Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chemical Biology, 2016, 11, 1870-1879.	3.4	26
22	Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531, 335-340.	27.8	272
23	Molecular Determinants of Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 6067-6079.	3.4	51
24	Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility. ACS Chemical Biology, 2012, 7, 1830-1839.	3.4	163
25	Cluster cytometry for highâ€capacity bioanalysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 419-429.	1.5	20
26	How Gα q Regulates PIP 2 Hydrolysis: Molecular Mechanisms and Prospects for Drug Development. FASEB Journal, 2012, 26, 667.1.	0.5	0
27	New Therapeutics Targeting Heart Failure: Development of GRK2 Selective Inhibitors. FASEB Journal, 2012, 26, 665.8.	0.5	0
28	Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors. Molecular Pharmacology, 2011, 80, 294-303.	2.3	104
29	An autoinhibitory helix in the C-terminal region of phospholipase C-β mediates Cαq activation. Nature Structural and Molecular Biology, 2011, 18, 999-1005.	8.2	71
30	Assembly of High Order Gαq-Effector Complexes with RGS Proteins. Journal of Biological Chemistry, 2008, 283, 34923-34934.	3.4	46
31	Unique Hydrophobic Extension of the RGS2 Amphipathic Helix Domain Imparts Increased Plasma Membrane Binding and Function Relative to Other RGS R4/B Subfamily Members. Journal of Biological Chemistry, 2007, 282, 33064-33075.	3.4	32
32	Incorporation and Replication of 8-Oxo-deoxyguanosine by the Human Mitochondrial DNA Polymerase. Journal of Biological Chemistry, 2006, 281, 36241-36248.	3.4	76