
Yutaka Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2549229/publications.pdf Version: 2024-02-01

ΥΠΤΛΚΑ ΝΑΚΑΟΛΜΑ

#	Article	IF	CITATIONS
1	Role of Microglial M1/M2 Polarization in Relapse and Remission of Psychiatric Disorders and Diseases. Pharmaceuticals, 2014, 7, 1028-1048.	1.7	152
2	Diversity and plasticity of microglial cells in psychiatric and neurological disorders. , 2015, 154, 21-35.		148
3	Activation of ventral tegmental GABAB receptors inhibits morphine-induced place preference in rats. European Journal of Pharmacology, 1996, 313, 169-173.	1.7	80
4	The GABAB receptor antagonist CGP36742 improves learned helplessness in rats. European Journal of Pharmacology, 1999, 381, 1-7.	1.7	73
5	The GABAB receptor antagonist CGP36742 attenuates the baclofen- and scopolamine-induced deficit in Morris water maze task in rats. Brain Research, 1997, 766, 101-106.	1.1	60
6	Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 504-515.	1.3	58
7	Involvement of GABAB receptor systems in action of antidepressants: baclofen but not bicuculline attenuates the effects of antidepressants on the forced swim test in rats. Brain Research, 1996, 709, 215-220.	1.1	47
8	Ethanol-induced state-dependent learning is mediated by 5-hydroxytryptamine3 receptors but not byN-methyl-d-aspartate receptor complex. Brain Research, 1996, 706, 227-232.	1.1	46
9	The 5-HT3 receptor agonist attenuates the action of antidepressants in the forced swim test in rats. Brain Research, 1998, 786, 189-193.	1.1	45
10	Involvement of benzodiazepine/GABA-A receptor complex in ethanol-induced state-dependent learning in rats. Brain Research, 1995, 686, 70-76.	1.1	42
11	Involvement of cholinergic systems in the deficit of place learning in Morris water maze task induced by baclofen in rats. Brain Research, 1995, 683, 209-214.	1.1	39
12	Involvement of GABAB receptor systems in experimental depression: baclofen but not bicuculline exacerbates helplessness in rats. Brain Research, 1996, 741, 240-245.	1.1	38
13	Interaction between benzodiazepine and GABA-A receptors in state-dependent learning. Life Sciences, 1993, 52, 1935-1945.	2.0	37
14	Involvement of GABAB receptor systems in action of antidepressants. II: Baclofen attenuates the effect of desipramine whereas muscimol has no effect in learned helplessness paradigm in rats. Brain Research, 1996, 728, 225-230.	1.1	33
15	Muscimol induces state-dependent learning in Morris water maze task in rats. Brain Research, 1995, 681, 126-130.	1.1	23
16	A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. European Journal of Pharmacology, 2021, 892, 173737.	1.7	12
17	Metal homeostasis disturbances in neurodegenerative disorders, with special emphasis on Creutzfeldt-Jakob disease – Potential pathogenetic mechanism and therapeutic implications. , 2020, 207, 107455.		7
18	Psycho-Behavioral Spiral of Disturbances in Prosocial Behavior, Stress Response, and Self-Regulation inSubstance-Related and Addictive Disorders. Journal of Drug and Alcohol Research, 2017, 6, 1-11.	0.9	4

#	Article	IF	CITATIONS
19	The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cellular and Molecular Neurobiology, 2023, 43, 963-989.	1.7	4