
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2549202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do epidermal keratinocytes have sensory and information processing systems?. Experimental Dermatology, 2022, 31, 459-474.	1.4	12
2	Masking of a malodorous substance on 1,2-dioleoyl-sn-glycero-3-phosphocholine molecular layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128045.	2.3	4
3	Polyoxyethylene/polyoxypropylene dimethyl ether (EPDME) random copolymer improves lipid structural ordering in stratum corneum of an epidermalâ€equivalent model as seen by twoâ€photon microscopy. Skin Research and Technology, 2021, 27, 632-638.	0.8	2
4	Substrate membrane bearing closeâ€packed array of micronâ€level pillars incrassates airâ€exposed threeâ€dimensional epidermal equivalent model. Skin Research and Technology, 2021, 27, 863-870.	0.8	2
5	Effects of trans-2-nonenal and olfactory masking odorants on proliferation of human keratinocytes. Biochemical and Biophysical Research Communications, 2021, 548, 1-6.	1.0	4
6	A computational model of the epidermis with the deformable dermis and its application to skin diseases. Scientific Reports, 2021, 11, 13234.	1.6	10
7	Characteristic responses of a 1,2-dioleoyl-sn-glycero-3-phosphocholine molecular layer to monovalent and divalent metal cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125115.	2.3	1
8	Can simple physicochemical studies predict the effects of molecules on epidermal waterâ€impermeable barrier function?. Experimental Dermatology, 2020, 29, 393-399.	1.4	6
9	Glutathione Counteracts the Effects of Japanese Cedar (<i>Cryptomeria japonica</i>) Pollen Allergen Cry j1. Biological and Pharmaceutical Bulletin, 2020, 43, 1591-1594.	0.6	1
10	Red light-promoted skin barrier recovery: Spatiotemporal evaluation by transepidermal potential. PLoS ONE, 2019, 14, e0219198.	1.1	7
11	Modulation of lipid fluidity likely contributes to the fructose/xylitol-induced acceleration of epidermal permeability barrier recovery. Archives of Dermatological Research, 2019, 311, 317-324.	1.1	10
12	Characteristic responses of a 1,2-dipalmitoleoyl-sn-glycero-3- phosphoethanolamine molecular layer depending on the number of CH(OH) groups in polyols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 149-153.	2.3	6
13	Characteristic responses of a 1,2-di-myristoyl-sn-glycero-3-phosphocholine molecular layer to polymeric surfactants at an air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 163-167.	2.3	3
14	Mathematical-model-guided development of full-thickness epidermal equivalent. Scientific Reports, 2018, 8, 17999.	1.6	14
15	Real-time imaging of human epidermal calcium dynamics in response to point laser stimulation. Journal of Dermatological Science, 2017, 86, 13-20.	1.0	11
16	Characteristic Isotherms for a Mixed Molecular Layer Composed of Phospholipid and Fatty Acid. Bulletin of the Chemical Society of Japan, 2017, 90, 801-806.	2.0	6
17	Expression level of Orai3 correlates with agingâ€related changes in mechanical stimulationâ€induced calcium signalling in keratinocytes. Experimental Dermatology, 2017, 26, 276-278.	1.4	4
18	Ability of sodium dodecyl sulfate to transiently stabilize a phospholipid molecular layer. Thin Solid Films, 2016, 615, 215-220.	0.8	6

#	Article	IF	CITATIONS
19	Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change. Extreme Physiology and Medicine, 2016, 5, 11.	2.5	8
20	Mathematical model for calcium-assisted epidermal homeostasis. Journal of Theoretical Biology, 2016, 397, 52-60.	0.8	18
21	Role of <scp>STIM</scp> 1–Orai1 system in intraâ€eellular calcium elevation induced by <scp>ATP</scp> in cultured human keratinocytes. Experimental Dermatology, 2016, 25, 323-325.	1.4	3
22	Japanese Cedar (Cryptomeria japonica) pollen allergen induces elevation of intracellular calcium in human keratinocytes and impairs epidermal barrier function of human skin ex vivo. Archives of Dermatological Research, 2016, 308, 49-54.	1.1	14
23	Sensing Environmental Factors: The Emerging Role of Receptors in Epidermal Homeostasis and Whole-Body Health. , 2016, , 403-414.		1
24	Functional glycine receptor in cultured human keratinocytes. Experimental Dermatology, 2015, 24, 307-309.	1.4	3
25	Characteristic responses of a phospholipid molecular layer to polyols. Colloids and Surfaces B: Biointerfaces, 2015, 136, 594-599.	2.5	17
26	Epidermis as the "Third Brainâ€ ? . Dermatologica Sinica, 2015, 33, 70-73.	0.2	10
27	Effects of medium flow on axon growth with or without nerve growth factor. Biochemical and Biophysical Research Communications, 2015, 465, 26-29.	1.0	6
28	Newly Discovered Olfactory Receptors in Epidermal Keratinocytes Are Associated with Proliferation, Migration, and Re-Epithelialization of Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 2677-2679.	0.3	11
29	Frontiers in epidermal barrier homeostasis – an approach to mathematical modelling of epidermal calcium dynamics. Experimental Dermatology, 2014, 23, 79-82.	1.4	9
30	Possible Role of Epidermal Keratinocytes in the Construction of Acupuncture Meridians. JAMS Journal of Acupuncture and Meridian Studies, 2014, 7, 92-94.	0.3	8
31	Coculture system of keratinocytes and dorsalâ€rootâ€ganglionâ€derived cells for screening neurotrophic factors involved in guidance of neuronal axon growth in the skin. Experimental Dermatology, 2014, 23, 58-60.	1.4	18
32	Mathematical Modeling of Calcium Waves Induced by Mechanical Stimulation in Keratinocytes. PLoS ONE, 2014, 9, e92650.	1.1	21
33	External negative electric potential accelerates exocytosis of lamellar bodies in human skin <i>ex vivo</i> . Experimental Dermatology, 2013, 22, 421-423.	1.4	9
34	How does epidermal pathology interact with mental state?. Medical Hypotheses, 2013, 80, 194-196.	0.8	20
35	Dynamics of intracellular calcium in cultured human keratinocytes after localized cell damage. Experimental Dermatology, 2013, 22, 367-369.	1.4	17
36	Low environmental humidity induces synthesis and release of cortisol in an epidermal organotypic culture system. Experimental Dermatology, 2013, 22, 662-664.	1.4	23

#	Article	IF	CITATIONS
37	Distinct intracellular calcium responses of individual cultured human keratinocytes to air pressure changes. Skin Research and Technology, 2013, 19, 346-351.	0.8	10
38	Ryanodine Receptors Are Expressed in Epidermal Keratinocytes and Associated with Keratinocyte Differentiation and Epidermal Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2012, 132, 69-75.	0.3	26
39	Sensory Systems of Epidermal Keratinocytes. , 2012, , 77-94.		0
40	Regulation of permeability barrier homeostasis. Clinics in Dermatology, 2012, 30, 263-268.	0.8	31
41	Interaction between a monosaccharide and a phospholipid molecular layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 405, 14-18.	2.3	11
42	<i>In vitro</i> formation of organized structure between keratinocytes and dorsalâ€rootâ€ganglion cells. Experimental Dermatology, 2012, 21, 886-888.	1.4	5
43	Oxytocin is expressed in epidermal keratinocytes and released upon stimulation with adenosine 5′â€{γâ€ŧhio]triphosphate <i>in vitro</i> . Experimental Dermatology, 2012, 21, 535-537.	1.4	49
44	Roles of Transient Receptor Potential Proteins (TRPs) in Epidermal Keratinocytes. Advances in Experimental Medicine and Biology, 2011, 704, 847-860.	0.8	44
45	Interactions between Sex Hormones and a 1,2-Di- <i>O</i> -myristoyl- <i>sn</i> -glycero-3-phosphocholine Molecular Layer: Characteristics of the Liposome, Surface Area versus Surface Pressure of the Monolayer, and Microscopic Observation. Bulletin of the Chemical Society of Japan, 2011, 84, 283-289.	2.0	6
46	Phosphodiesterase inhibitors block the acceleration of skin permeability barrier repair by red light. Experimental Dermatology, 2011, 20, 568-571.	1.4	8
47	Morphological and functional differences in coculture system of keratinocytes and dorsal-root-ganglion-derived cells depending on time of seeding. Experimental Dermatology, 2011, 20, 464-467.	1.4	22
48	Skin surface electrical potential as an indicator of skin condition: observation of surfactantâ€induced dry skin and middleâ€aged skin. Experimental Dermatology, 2011, 20, 757-759.	1.4	8
49	Intracellular calcium response to high temperature is similar in undifferentiated and differentiated cultured human keratinocytes. Experimental Dermatology, 2011, 20, 839-840.	1.4	14
50	Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption. Experimental Dermatology, 2011, 20, 943-944.	1.4	15
51	Effects of metals on skin permeability barrier recovery. Experimental Dermatology, 2010, 19, e124-7.	1.4	10
52	Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation. Journal of Cellular Physiology, 2010, 224, 229-233.	2.0	24
53	Mathematical analysis of intercellular calcium propagation induced by adenosine triphosphate. Skin Research and Technology, 2010, 16, 146-150.	0.8	7
54	Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of coldâ€sensitive TRP receptors in epidermal permeability barrier homoeostasis. Experimental Dermatology, 2010, 19, 791-795.	1.4	67

MITSUHIRO DENDA

#	Article	IF	CITATIONS
55	Topical Application of TRPA1 Agonists and Brief Cold Exposure Accelerate Skin Permeability Barrier Recovery. Journal of Investigative Dermatology, 2010, 130, 1942-1945.	0.3	50
56	Neuronal Nitric Oxide Synthase in Epidermis Is Involved in Cutaneous Circulatory Response to Mechanical Stimulation. Journal of Investigative Dermatology, 2010, 130, 1158-1166.	0.3	17
57	Exposure to Low Temperature Induces Elevation of Intracellular Calcium in Cultured Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 1945-1948.	0.3	43
58	Glycolic acid induces keratinocyte proliferation in a skin equivalent model via TRPV1 activation. Journal of Dermatological Science, 2010, 57, 108-113.	1.0	30
59	Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell and Tissue Research, 2009, 338, 99-106.	1.5	80
60	Calcium Ion Gradients and Dynamics in Cultured Skin Slices of Rat Hindpaw in Response to Stimulation with ATP. Journal of Investigative Dermatology, 2009, 129, 584-589.	0.3	27
61	Expressions of rod and cone photoreceptorâ€like proteins in human epidermis. Experimental Dermatology, 2009, 18, 567-570.	1.4	63
62	Skin surface electric potential as an indicator of skin condition: a new, nonâ€invasive method to evaluate epidermal condition. Experimental Dermatology, 2008, 17, 688-692.	1.4	24
63	Visible Radiation Affects Epidermal Permeability Barrier Recovery: Selective Effects of Red and Blue Light. Journal of Investigative Dermatology, 2008, 128, 1335-1336.	0.3	43
64	Extracellular ATP Has Stimulatory Effects on the Expression and Release of IL-6 Via Purinergic Receptors in Normal Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 362-371.	0.3	95
65	Effects of Skin Surface Temperature on Epidermal Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2007, 127, 654-659.	0.3	165
66	Topical Application of Neuronal Nitric Oxide Synthase Inhibitor Accelerates Cutaneous Barrier Recovery and Prevents Epidermal Hyperplasia Induced by Barrier Disruption. Journal of Investigative Dermatology, 2007, 127, 1713-1719.	0.3	32
67	Air-exposed keratinocytes exhibited intracellular calcium oscillation. Skin Research and Technology, 2007, 13, 195-201.	0.8	39
68	Epidermal keratinocytes as the forefront of the sensory system. Experimental Dermatology, 2007, 16, 157-161.	1.4	128
69	Expression of voltage-gated calcium channel subunit alpha1C in epidermal keratinocytes and effects of agonist and antagonists of the channel on skin barrier homeostasis. Experimental Dermatology, 2006, 15, 455-460.	1.4	49
70	Unsaturated Fatty Acids Induce Calcium Influx into Keratinocytes and Cause Abnormal Differentiation of Epidermis. Journal of Investigative Dermatology, 2005, 124, 1008-1013.	0.3	87
71	Characterization of Multiple P2X Receptors in Cultured Normal Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2005, 124, 756-763.	0.3	53
72	Dopamine D2-Like Receptor Agonists Accelerate Barrier Repair and Inhibit the Epidermal Hyperplasia Induced by Barrier Disruption. Journal of Investigative Dermatology, 2005, 125, 783-789.	0.3	48

#	Article	lF	CITATIONS
73	Association of Cyclic Adenosine Monophosphate with Permeability Barrier Homeostasis of Murine Skin. Journal of Investigative Dermatology, 2004, 122, 140-146.	0.3	18
74	NMDA-Type Glutamate Receptor Is Associated with Cutaneous Barrier Homeostasis. Journal of Investigative Dermatology, 2003, 120, 1023-1029.	0.3	77
75	β2-Adrenergic Receptor Antagonist Accelerates Skin Barrier Recovery and Reduces Epidermal Hyperplasia Induced by Barrier Disruption. Journal of Investigative Dermatology, 2003, 121, 142-148.	0.3	54
76	Influx of Calcium and Chloride Ions into Epidermal Keratinocytes Regulates Exocytosis of Epidermal Lamellar Bodies and Skin Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2003, 121, 362-367.	0.3	97
77	Altered Distribution of Calcium in Facial Epidermis of Aged Adults. Journal of Investigative Dermatology, 2003, 121, 1557-1558.	0.3	39
78	Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. Journal of Dermatological Science, 2003, 31, 29-35.	1.0	115
79	Functional Vanilloid Receptors in Cultured Normal Human Epidermal Keratinocytes. Biochemical and Biophysical Research Communications, 2002, 291, 124-129.	1.0	264
80	New strategies to improve skin barrier homeostasis. Advanced Drug Delivery Reviews, 2002, 54, S123-S130.	6.6	23
81	Negative Electric Potential Induces Alteration of Ion Gradient and Lamellar Body Secretion in the Epidermis, and Accelerates Skin Barrier Recovery After Barrier Disruption. Journal of Investigative Dermatology, 2002, 118, 65-72.	0.3	38
82	γ-Aminobutyric Acid (A) Receptor Agonists Accelerate Cutaneous Barrier Recovery and Prevent Epidermal Hyperplasia Induced by Barrier Disruption. Journal of Investigative Dermatology, 2002, 119, 1041-1047.	0.3	44
83	P2X Purinergic Receptor Antagonist Accelerates SkinBarrier Repair and Prevents Epidermal Hyperplasia Inducedby Skin Barrier Disruption. Journal of Investigative Dermatology, 2002, 119, 1034-1040.	0.3	88
84	Modulations in Epidermal Calcium Regulate the Expression of Differentiation-Specific Markers. Journal of Investigative Dermatology, 2002, 119, 1128-1136.	0.3	188
85	Skin Surface Electric Potential Induced by Ion-Flux through Epidermal Cell Layers. Biochemical and Biophysical Research Communications, 2001, 284, 112-117.	1.0	44
86	Immunoreactivity of VR1 on Epidermal Keratinocyte of Human Skin. Biochemical and Biophysical Research Communications, 2001, 285, 1250-1252.	1.0	222
87	Histamine H1 and H2 Receptor Antagonists Accelerate Skin Barrier Repair and Prevent Epidermal Hyperplasia Induced by Barrier Disruption in a Dry Environment. Journal of Investigative Dermatology, 2001, 116, 261-265.	0.3	57
88	Regulation of the cutaneous allergic reaction by humidity. Contact Dermatitis, 2000, 42, 81-84.	0.8	40
89	Visual Imaging of Ion Distribution in Human Epidermis. Biochemical and Biophysical Research Communications, 2000, 272, 134-137.	1.0	94
90	Influence of dry environment on epidermal function. Journal of Dermatological Science, 2000, 24, S22-S28.	1.0	27

MITSUHIRO DENDA

#	Article	IF	CITATIONS
91	Loss of water from the stratum corneum induces epidermal DNA synthesis in hairless mice. Archives of Dermatological Research, 1998, 290, 634-637.	1.1	30
92	Exposure to a Dry Environment Enhances Epidermal Permeability Barrier Function. Journal of Investigative Dermatology, 1998, 111, 858-863.	0.3	200
93	Low Humidity Stimulates Epidermal DNA Synthesis and Amplifies the Hyperproliferative Response to Barrier Disruption: Implication for Seasonal Exacerbations of Inflammatory Dermatoses. Journal of Investigative Dermatology, 1998, 111, 873-878.	0.3	218
94	Dry condition affects desquamation of stratum corneum in vivo. Journal of Dermatological Science, 1998, 18, 163-169.	1.0	54
95	trans-4-(Aminomethyl)cyclohexane Carboxylic Acid (T-AMCHA), an Anti-Fibrinolytic Agent, Accelerates Barrier Recovery and Prevents the Epidermal Hyperplasia Induced by Epidermal Injury in Hairless Mice and Humans. Journal of Investigative Dermatology, 1997, 109, 84-90.	0.3	86
96	Epidermal injury stimulates prenylation in the epidermis of hairless mice. Archives of Dermatological Research, 1997, 289, 104-110.	1.1	5
97	The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Archives of Dermatological Research, 1996, 288, 230-238.	1.1	117
98	The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Archives of Dermatological Research, 1996, 288, 230-238.	1.1	88
99	Physical and Chemical Factors that Improve Epidermal Permeability Barrier Homeostasis. , 0, , .		1