Gavin D M Jeffries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254915/publications.pdf

Version: 2024-02-01

331670 197818 2,459 57 21 49 h-index citations g-index papers 57 57 57 3124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rational antibody design for undruggable targets using kinetically controlled biomolecular probes. Science Advances, 2021, 7, .	10.3	3
2	3D micro-organisation printing of mammalian cells to generate biological tissues. Scientific Reports, 2020, 10, 19529.	3.3	20
3	Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size. Langmuir, 2020, 36, 9693-9700.	3.5	6
4	Label-free spatio-temporal monitoring of cytosolic mass, osmolarity, and volume in living cells. Nature Communications, 2019, 10, 340.	12.8	25
5	Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients. Small, 2018, 14, e1703541.	10.0	2
6	Single-Cell Analysis with the BioPen. , 2018, , 187-219.		0
7	Membrane Remodeling of Giant Vesicles in Response to Localized Calcium Ion Gradients. Journal of Visualized Experiments, 2018, , .	0.3	1
8	Formation of Membrane Tubular Protrusions upon Localized Application of Calcium Ions to the Surface of Giant Lipid Vesicles. Biophysical Journal, 2018, 114, 562a.	0.5	0
9	Synthetic Lipid Nanotubes: Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients (Small 21/2018). Small, 2018, 14, 1870098.	10.0	0
10	Endocytic uptake of monomeric amyloid- \hat{l}^2 peptides is clathrin- and dynamin-independent and results in selective accumulation of Al²(1â \in "42) compared to Al²(1â \in "40). Scientific Reports, 2017, 7, 2021.	3.3	80
11	SU-8 free-standing microfluidic probes. Biomicrofluidics, 2017, 11, 014112.	2.4	11
12	A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance. Journal of Micromechanics and Microengineering, 2017, 27, 114002.	2.6	13
13	Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions. Langmuir, 2017, 33, 11010-11017.	3.5	51
14	Millimeter-wave sensor based on a \hat{l} »/2-line resonator for identification and dielectric characterization of non-ionic surfactants. Scientific Reports, 2016, 6, 19523.	3.3	7
15	Cellular communication via directed protrusion growth: Critical length-scales and membrane morphology. Nano Communication Networks, 2015, 6, 178-182.	2.9	2
16	Spatial characterization of a multifunctional pipette for drug delivery in hippocampal brain slices. Journal of Neuroscience Methods, 2015, 241, 132-136.	2.5	5
17	A Heating-Superfusion Platform Technology for the Investigation of Protein Function in Single Cells. Analytical Chemistry, 2015, 87, 381-387.	6.5	9
18	A rapid microfluidic technique for integrated viability determination of adherent single cells. Analytical and Bioanalytical Chemistry, 2015, 407, 1295-1301.	3.7	3

#	Article	IF	CITATIONS
19	Millimetre-wave dielectric spectroscopy for cell analysis. , 2014, , .		2
20	A Multifunctional Pipette for Localized Drug Administration to Brain Slices. Biophysical Journal, 2014, 106, 191a.	0.5	4
21	Usage of a Localised Microflow Device to Show that Mitochondrial Networks Are Not Extensive in Skeletal Muscle Fibres. PLoS ONE, 2014, 9, e108601.	2.5	8
22	Effect of Cholesterol Depletion on the Pore Dilation of TRPV1. Molecular Pain, 2013, 9, 1744-8069-9-1.	2.1	62
23	A multifunctional pipette for localized drug administration to brain slices. Journal of Neuroscience Methods, 2013, 219, 292-296.	2.5	12
24	Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks. Lab on A Chip, 2013, 13, 3822.	6.0	12
25	Studying Bending Rigidity of Model Vesicles and Cell Plasma Membrane using Lipid Nanotubes. Biophysical Journal, 2013, 104, 43a-44a.	0.5	0
26	An Optofluidic Temperature Probe. Sensors, 2013, 13, 4289-4302.	3.8	17
27	Spontaneous shape transformation of free-floating lipid membrane nanotubes. Soft Matter, 2013, 9, 5155.	2.7	8
28	Probing Enzymatic Activity Inside Single Cells. Analytical Chemistry, 2013, 85, 10126-10133.	6.5	5
29	Artificial nanotube connections and transport of molecular cargo between mammalian cells. Nano Communication Networks, 2013, 4, 197-204.	2.9	5
30	A multifunctional pipette. Lab on A Chip, 2012, 12, 1255.	6.0	89
31	Formation of giant unilamellar vesicles from spin-coated lipid films by localized IR heating. Soft Matter, 2012, 8, 10823.	2.7	23
32	Radial Sizing of Lipid Nanotubes Using Membrane Displacement Analysis. Nano Letters, 2012, 12, 1372-1378.	9.1	17
33	Mimicking Endocytosis Inside Giant Unilamellar Vesicles. Biophysical Journal, 2012, 102, 94a.	0.5	0
34	Single-cell electroporation using a multifunctional pipette. Lab on A Chip, 2012, 12, 4605.	6.0	22
35	Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices. Micromachines, 2012, 3, 442-461.	2.9	19
36	Heat-induced formation of single giant unilamellar vesicles. Soft Matter, 2011, 7, 9751.	2.7	16

#	Article	IF	Citations
37	A rapid and economical method for profiling feature heights during microfabrication. Lab on A Chip, 2011, 11, 974.	6.0	11
38	Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles. Journal of the American Chemical Society, 2011, 133, 18046-18049.	13.7	11
39	Ultrasensitive and High-Throughput Fluorescence Analysis of Droplet Contents with Orthogonal Line Confocal Excitation. Analytical Chemistry, 2010, 82, 9948-9954.	6.5	30
40	Droplets for Ultrasmall-Volume Analysis. Analytical Chemistry, 2009, 81, 5111-5118.	6.5	168
41	Optofluidic generation of Laguerre-Gaussian beams. Optics Express, 2009, 17, 17555.	3.4	6
42	A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices. Lab on A Chip, 2009, 9, 870.	6.0	33
43	Simultaneous generation of multiple aqueous droplets in a microfluidic device. Analytica Chimica Acta, 2008, 630, 124-130.	5.4	38
44	Quantitative force mapping of an optical vortex trap. Applied Physics Letters, 2008, 92, 161111.	3.3	22
45	Tunable generation of Bessel beams with a fluidic axicon. Applied Physics Letters, 2008, 92, 261101.	3.3	63
46	Controlled fusion of femtoliter-volume aqueous droplets using holographic optical tweezers. , 2007, , .		0
47	Spin-to-Orbital Angular Momentum Conversion in a Strongly Focused Optical Beam. Physical Review Letters, 2007, 99, 073901.	7.8	501
48	Optical gradient flow focusing. Optics Express, 2007, 15, 6167.	3.4	43
49	Fabrication improvements for thermoset polyester (TPE) microfluidic devices. Lab on A Chip, 2007, 7, 923.	6.0	32
50	Controlled Shrinkage and Re-expansion of a Single Aqueous Droplet inside an Optical Vortex Trap. Journal of Physical Chemistry B, 2007, 111, 2806-2812.	2.6	20
51	Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets. Analytical Chemistry, 2007, 79, 224-228.	6.5	70
52	Using Polarization-Shaped Optical Vortex Traps for Single-Cell Nanosurgery. Nano Letters, 2007, 7, 415-420.	9.1	123
53	Dynamic Modulation of Chemical Concentration in an Aqueous Droplet. Angewandte Chemie - International Edition, 2007, 46, 1326-1328.	13.8	45
54	Microfluidic and Optical Systems for the On-Demand Generation and Manipulation of Single Femtoliter-Volume Aqueous Droplets. Analytical Chemistry, 2006, 78, 6433-6439.	6.5	112

#	Article	IF	CITATIONS
55	Single-Molecule Detection and Manipulation in Nanotechnology and Biology. , 2005, , 197-225.		1
56	Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets. Analytical Chemistry, 2005, 77, 1539-1544.	6.5	486
57	Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. Lab on A Chip, 2003, 3, 158.	6.0	85