
Marco Armandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2548710/publications.pdf Version: 2024-02-01

Μαρόο Δρμανιδι

#	Article	IF	CITATIONS
1	Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation. Applied Catalysis B: Environmental, 2021, 282, 119536.	20.2	25
2	Tragacanth Gum as Green Binder for Sustainable Waterâ€Processable Electrochemical Capacitor. ChemSusChem, 2021, 14, 356-362.	6.8	18
3	Effect of the preparation technique of Cu-ZSM-5 catalysts on the isothermal oscillatory behavior of nitrous oxide decomposition. Catalysis Today, 2020, 345, 59-70.	4.4	8
4	Comprehensive study on the effect of magnesium loading over nickel-ordered mesoporous alumina for dry reforming of methane. Energy Conversion and Management, 2020, 225, 113470.	9.2	38
5	Effects of the Brookite Phase on the Properties of Different Nanostructured TiO ₂ Phases Photocatalytically Active Towards the Degradation of Nâ€Phenylurea. ChemistryOpen, 2020, 9, 903-912.	1.9	11
6	Graphenic Aerogels Decorated with Ag Nanoparticles as 3D SERS Substrates for Biosensing. Particle and Particle Systems Characterization, 2020, 37, 2000095.	2.3	9
7	Hybrid organic-inorganic nanotubes effectively adsorb some organic pollutants in aqueous phase. Applied Clay Science, 2020, 186, 105449.	5.2	14
8	Simultaneous improvement of ammonia mediated NOx SCR and soot oxidation for enhanced SCR-on-Filter application. Applied Catalysis A: General, 2020, 596, 117538.	4.3	19
9	A Facile and Green Synthesis of a MoO2-Reduced Graphene Oxide Aerogel for Energy Storage Devices. Materials, 2020, 13, 594.	2.9	20
10	Electrochemical Measurements as Screening Method for Water Oxidation Catalyst. PoliTO Springer Series, 2019, , 75-91.	0.5	0
11	Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts. PoliTO Springer Series, 2019, , 29-47.	0.5	0
12	Use of the Bubbling Reactor with the \$\${mathbf{Ru(bpy)}}_{mathbf{3}}^{mathbf{2+}} {mathbf{/S}}_{mathbf{2}} {mathbf{O}}_{mathbf{8}} ^{mathbf{2 - }}\$\$ Photosystem for Measuring the Rate of Water Oxidation as Promoted by Different Manganese Oxides. PoliTO Springer Series, 2019, , 49-74.	0.5	0
13	Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series, 2019, , .	0.5	3
14	Application of Reverse Micelle Sol–Gel Synthesis for Bulk Doping and Heteroatoms Surface Enrichment in Mo-Doped TiO2 Nanoparticles. Materials, 2019, 12, 937.	2.9	21
15	Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuelÂcell. Electrochimica Acta, 2018, 266, 220-232.	5.2	37
16	Photo-activated degradation of tartrazine by H 2 O 2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catalysis Today, 2018, 304, 199-207.	4.4	38
17	Photoreduction of nitrates from waste and drinking water. Materials Today: Proceedings, 2018, 5, 17404-17413.	1.8	11
18	Beneficial effect of Fe addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction. Electrochimica Acta, 2018, 284, 294-302.	5.2	13

#	Article	IF	CITATIONS
19	Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells. Applied Catalysis B: Environmental, 2017, 205, 637-653.	20.2	115
20	Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion. Applied Catalysis B: Environmental, 2017, 211, 31-45.	20.2	73
21	A simple model for a complex system: Kinetics of water oxidation with the [Ru(bpy) 3] 2+ /S 2 O 8 2â^' photosystem as catalyzed by Mn 2 O 3 under different illumination conditions. Chemical Engineering Journal, 2017, 311, 143-152.	12.7	13
22	Photocatalytic Processes for the Abatement of N-Containing Pollutants from Waste Water. Part 1: Inorganic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3632-3653.	0.9	23
23	Catalytic and Photocatalytic Processes for the Abatement of N-Containing Pollutants from Wastewater. Part 2: Organic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3654-3672.	0.9	23
24	Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts. Materials, 2016, 9, 296.	2.9	31
25	Influence of different transition metals on the properties of Me–N–C (MeÂ=ÂFe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22570-22588.	7.1	67
26	Mixed 1T–2H Phase MoS ₂ /Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance. ACS Applied Materials & Interfaces, 2016, 8, 32842-32852.	8.0	132
27	Synthesis and Characterization of Fe-doped Aluminosilicate Nanotubes with Enhanced Electron Conductive Properties. Journal of Visualized Experiments, 2016, , .	0.3	1
28	Reactivity of bare and Fe-doped alumino-silicate nanotubes (imogolite) with H2O2 and the azo-dye Acid Orange 7. Catalysis Today, 2016, 277, 89-96.	4.4	24
29	Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chemical Engineering Journal, 2015, 278, 36-45.	12.7	15
30	Varying the morphology of Fe-N-C electrocatalysts by templating Iron Phthalocyanine precursor with different porous SiO 2 to promote the Oxygen Reduction Reaction. Electrochimica Acta, 2015, 177, 43-50.	5.2	51
31	Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples. Physical Chemistry Chemical Physics, 2015, 17, 10774-10780.	2.8	8
32	Fe- and V-doped mesoporous titania prepared by direct synthesis: Characterization and role in the oxidation of AO7 by H2O2 in the dark. Catalysis Today, 2014, 227, 71-79.	4.4	27
33	The behaviour of an old catalyst revisited in a wet environment: Co ions in APO-5 split water under mild conditions. Physical Chemistry Chemical Physics, 2014, 16, 7074-7082.	2.8	7
34	A new method for studying activity and reaction kinetics of photocatalytic water oxidation systems using a bubbling reactor. Chemical Engineering Journal, 2014, 238, 17-26.	12.7	21
35	An easy approach for the fabrication of TiO2 nanotube-based transparent photoanodes for Dye-sensitized Solar Cells. Solar Energy, 2013, 95, 90-98.	6.1	45
36	IR spectroscopic study of the acidic properties of alumino-silicate single-walled nanotubes of the imogolite type. Catalysis Today, 2013, 218-219, 3-9.	4.4	11

Marco Armandi

#	Article	IF	CITATIONS
37	Surface properties of alumino-silicate single-walled nanotubes of the imogolite type. Physical Chemistry Chemical Physics, 2013, 15, 13381.	2.8	32
38	Visible-Light Driven Oxidation of Water as Catalyzed by Co-APO-5 in the Presence of Ru Sensitizer. ACS Catalysis, 2013, 3, 1272-1278.	11.2	25
39	Modes of Interaction of Simazine with the Surface of Amorphous Silica in Water. Part II: Adsorption at Temperatures Higher than Ambient. Journal of Physical Chemistry C, 2013, 117, 27047-27051.	3.1	6
40	CoAPO5 as a water oxidation catalyst and a light sensitizer. Chemical Communications, 2012, 48, 5754.	4.1	17
41	CO ₂ Adsorption on Aluminosilicate Single-Walled Nanotubes of Imogolite Type. Journal of Physical Chemistry C, 2012, 116, 20417-20425.	3.1	33
42	Thermal Collapse of Single-Walled Alumino-Silicate Nanotubes: Transformation Mechanisms and Morphology of the Resulting Lamellar Phases. Journal of Physical Chemistry C, 2012, 116, 23577-23584.	3.1	19
43	An IR spectroscopy assessment of the surface acidity of mesoporous VO –SiO2 catalysts. Microporous and Mesoporous Materials, 2012, 164, 111-119.	4.4	24
44	Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas. Catalysis Today, 2012, 179, 140-148.	4.4	35
45	Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Physical Chemistry Chemical Physics, 2011, 13, 744-750.	2.8	102
46	Effect of vanadium dispersion and support properties on the catalytic activity of V-SBA-15 and V-MCF mesoporous materials prepared by direct synthesis. Catalysis Today, 2011, 176, 458-464.	4.4	27
47	Novel vanadium-containing mesocellular foams (V-MCF) obtained by direct synthesis. Microporous and Mesoporous Materials, 2011, 142, 45-54.	4.4	27
48	Ammoniaâ€Solvated Ammonium Species in the NH ₄ â€ZSMâ€5 Zeolite. ChemPhysChem, 2010, 11, 3255-3261.	2.1	12
49	Vanadium-containing SBA-15 systems prepared by direct synthesis: Physico-chemical and catalytic properties in the decomposition of dichloromethane. Microporous and Mesoporous Materials, 2010, 133, 36-44.	4.4	44
50	Thermodynamics of Carbon Dioxide Adsorption on the Protonic Zeolite Hâ€ZSMâ€5. ChemPhysChem, 2009, 10, 3316-3319.	2.1	28
51	Variableâ€Temperature Infrared Spectroscopy Studies on the Thermodynamics of CO Adsorption on the Zeolite Ca–Y. ChemPhysChem, 2008, 9, 1747-1751.	2.1	14
52	Effect of post-synthesis treatment on the stability and surface properties of MCM-48 silica. Microporous and Mesoporous Materials, 2005, 83, 172-180.	4.4	34