Margherita Doria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case Report: Altered NK Cell Compartment and Reduced CXCR4 Chemotactic Response of B Lymphocytes in an Immunodeficient Patient With HPV-Related Disease. Frontiers in Immunology, 2022, 13, 799564.	4.8	0
2	MEOX2 Regulates the Growth and Survival of Glioblastoma Stem Cells by Modulating Genes of the Glycolytic Pathway and Response to Hypoxia. Cancers, 2022, 14, 2304.	3.7	2
3	Relevance of multiply spliced HIV-1 RNA measurement in assessing the efficacy of viral latency-reversing strategies. EBioMedicine, 2021, 65, 103265.	6.1	0
4	Combinations of Histone Deacetylase Inhibitors with Distinct Latency Reversing Agents Variably Affect HIV Reactivation and Susceptibility to NK Cell-Mediated Killing of T Cells That Exit Viral Latency. International Journal of Molecular Sciences, 2021, 22, 6654.	4.1	8
5	Early ART initiation during infancy preserves natural killer cells in young European adolescents living with HIV (CARMA cohort). Journal of the International AIDS Society, 2021, 24, e25717.	3.0	8
6	The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biology, 2021, 18, 75-87.	3.1	3
7	Case Report: EBV Chronic Infection and Lymphoproliferation in Four APDS Patients: The Challenge of Proper Characterization, Therapy, and Follow-Up. Frontiers in Pediatrics, 2021, 9, 703853.	1.9	8
8	Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia. Clinical Immunology, 2021, 230, 108802.	3.2	3
9	Expanding Phenotype of Schimke Immuno-Osseous Dysplasia: Congenital Anomalies of the Kidneys and of the Urinary Tract and Alteration of NK Cells. International Journal of Molecular Sciences, 2020, 21, 8604.	4.1	12
10	Partial T cell defects and expanded CD56bright NK cells in an SCID patient carrying hypomorphic mutation in the <i>IL2RG</i> gene. Journal of Leukocyte Biology, 2020, 108, 739-748.	3.3	3
11	DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection?. International Journal of Molecular Sciences, 2019, 20, 3715.	4.1	34
12	Potential of the NKG2D/NKG2DL Axis in NK Cell-Mediated Clearance of the HIV-1 Reservoir. International Journal of Molecular Sciences, 2019, 20, 4490.	4.1	12
13	Vδ2 T-Cells Kill ZIKV-Infected Cells by NKG2D-Mediated Cytotoxicity. Microorganisms, 2019, 7, 350.	3.6	9
14	Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency. Scientific Reports, 2019, 9, 4373.	3.3	8
15	In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4+ T Cells Harboring Reactivated Human Immunodeficiency Virus. Frontiers in Immunology, 2018, 9, 1514.	4.8	22
16	Dual regulation of L-selectin (CD62L) by HIV-1: Enhanced expression by Vpr in contrast with cell-surface down-modulation by Nef and Vpu. Virology, 2018, 523, 121-128.	2.4	8
17	NK cells of HIV-1-infected patients with poor CD4+ T-cell reconstitution despite suppressive HAART show reduced IFN-1 ³ production and high frequency of autoreactive CD56bright cells. Immunology Letters, 2017, 190, 185-193.	2.5	16
18	The histone deacetylase inhibitor SAHA simultaneously reactivates HIV-1 from latency and up-regulates NKG2D ligands sensitizing for natural killer cell cytotoxicity. Virology, 2017, 510, 9-21.	2.4	25

Margherita Doria

#	Article	IF	CITATIONS
19	ADAR1 restricts LINE-1 retrotransposition. Nucleic Acids Research, 2017, 45, 155-168.	14.5	58
20	Brief Report: L-Selectin (CD62L) Is Downregulated on CD4+ and CD8+ T Lymphocytes of HIV-1–Infected Individuals Naive for ART. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 492-497.	2.1	4
21	Expression and Function of NKG2D Is Impaired in CD8+ T Cells of Chronically HIV-1–Infected Patients Without ART. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 70, 347-356.	2.1	4
22	Release of Soluble Ligands for the Activating NKG2D Receptor: One More Immune Evasion Strategy Evolved by HIV-1 ?. Current Drug Targets, 2015, 17, 54-64.	2.1	5
23	HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4 ⁺ T Lymphocytes. Journal of Virology, 2015, 89, 5687-5700.	3.4	39
24	The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology, 2015, 485, 475-480.	2.4	12
25	HIV-1 Infection Causes a Down-Regulation of Genes Involved in Ribosome Biogenesis. PLoS ONE, 2014, 9, e113908.	2.5	29
26	The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222. RNA Biology, 2014, 11, 334-338.	3.1	21
27	The DNA Damage Response: A Common Pathway in the Regulation of NKG2D and DNAM-1 Ligand Expression in Normal, Infected, and Cancer Cells. Frontiers in Immunology, 2014, 4, 508.	4.8	110
28	Altered expression of ligands for the NKG2D and DNAM-1 activating receptors during HIV-1 infection. Retrovirology, 2013, 10, .	2.0	0
29	The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. Journal of General Virology, 2013, 94, 2664-2669.	2.9	34
30	Soluble ligands for the NKG2D receptor are released during HIVâ€1 infection and impair NKG2D expression and cytotoxicity of NK cells. FASEB Journal, 2013, 27, 2440-2450.	0.5	75
31	The Human Immunodeficiency Virus Type 1 Nef and Vpu Proteins Downregulate the Natural Killer Cell-Activating Ligand PVR. Journal of Virology, 2012, 86, 4496-4504.	3.4	114
32	Plasma levels of soluble MICA and ULBP2 are increased in children allergic to dust mites. Journal of Allergy and Clinical Immunology, 2012, 130, 1003-1005.	2.9	7
33	The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology, 2011, 410, 316-326.	2.4	26
34	Role of the CD4 Down-Modulation Activity of Nef in HIV-1 Infectivity. Current HIV Research, 2011, 9, 490-495.	0.5	12
35	CD4 downregulation by the human immunodeficiency virus type 1 Nef protein is dispensable for optimal output and functionality of viral particles in primary T cells. Journal of General Virology, 2011, 92, 141-150.	2.9	10
36	ADAR2 editing enzyme is a novel human immunodeficiency virus-1 proviral factor. Journal of General Virology, 2011, 92, 1228-1232.	2.9	36

Margherita Doria

#	ARTICLE	IF	CITATIONS
37	Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Research, 2009, 37, 5848-5858.	14.5	129
38	Internalization and intracellular retention of CD4 are two separate functions of the human immunodeficiency virus type 1 Nef protein. Journal of General Virology, 2007, 88, 3133-3138.	2.9	7
39	Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. Journal of General Virology, 2007, 88, 242-250.	2.9	161
40	Nef alleles from children with non-progressive HIV-1 infection modulate MHC-II expression more efficiently than those from rapid progressors. Aids, 2007, 21, 1103-1107.	2.2	25
41	The Pro78 residue regulates the capacity of the human immunodeficiency virus type 1 Nef protein to inhibit recycling of major histocompatibility complex class I molecules in an SH3-independent manner. Journal of General Virology, 2006, 87, 2291-2296.	2.9	16
42	Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. Journal of Experimental Medicine, 2005, 202, 817-828.	8.5	193
43	CD4 and Major Histocompatibility Complex Class I Downregulation by the Human Immunodeficiency Virus Type 1 Nef Protein in Pediatric AIDS Progression. Journal of Virology, 2003, 77, 11536-11545.	3.4	48
44	Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children. Aids, 2003, 17, 1291-1301.	2.2	39
45	The Eps15 Homology (Eh) Domain-Based Interaction between Eps15 and Hrb Connects the Molecular Machinery of Endocytosis to That of Nucleocytosolic Transport. Journal of Cell Biology, 1999, 147, 1379-1384.	5.2	48
46	An RNA molecule copurifies with RNase P activity fromXenopus laevisoocytes. Nucleic Acids Research, 1991, 19, 2315-2320.	14.5	49
47	Site selection by Xenopus laevis RNAase P. Cell, 1989, 58, 37-45.	28.9	52