Subhasis Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2548325/publications.pdf Version: 2024-02-01

SURHASIS SINHA

#	Article	IF	CITATIONS
1	Design of Radiation Tolerant Materials Via Interface Engineering. Advanced Materials, 2013, 25, 6975-6979.	11.1	307
2	Corrosion-resistant high entropy alloy with high strength and ductility. Scripta Materialia, 2019, 166, 168-172.	2.6	148
3	Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Materials Science and Engineering C, 2020, 110, 110738.	3.8	75
4	Reversed strength-ductility relationship in microstructurally flexible high entropy alloy. Scripta Materialia, 2018, 154, 163-167.	2.6	72
5	Design and development of precipitate strengthened advanced high strength steel for automotive application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 394-402.	2.6	66
6	Tensile deformation of 316L austenitic stainless steel using in-situ electron backscatter diffraction and crystal plasticity simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 637, 48-55.	2.6	61
7	Extremely high fatigue resistance in an ultrafine grained high entropy alloy. Applied Materials Today, 2019, 15, 525-530.	2.3	61
8	Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy. Materials Research Letters, 2018, 6, 613-619.	4.1	54
9	Effect of grain boundary engineering on the microstructure and mechanical properties of copper containing austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 175-185.	2.6	52
10	Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy. Applied Materials Today, 2018, 13, 198-206.	2.3	50
11	Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping. Acta Materialia, 2014, 64, 333-344.	3.8	42
12	Nanoindentation behavior of high entropy alloys with transformation-induced plasticity. Scientific Reports, 2019, 9, 6639.	1.6	41
13	On the evolving nature of c/a ratio in a hexagonal close-packed epsilon martensite phase in transformative high entropy alloys. Scientific Reports, 2019, 9, 13185.	1.6	40
14	Microstructurally flexible high entropy alloys: Linkages between alloy design and deformation behavior. Materials and Design, 2020, 194, 108968.	3.3	34
15	Development of microstructure and texture in Copper during warm accumulative roll bonding. Materials Characterization, 2012, 70, 74-82.	1.9	33
16	Effect of initial orientation on the tensile properties of commercially pure titanium. Philosophical Magazine, 2016, 96, 1485-1508.	0.7	31
17	In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing. Materials and Design, 2017, 116, 686-693.	3.3	31
18	Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy. Acta Materialia, 2020, 184, 164-178.	3.8	30

SUBHASIS SINHA

#	Article	IF	CITATIONS
19	Metastability driven hierarchical microstructural engineering: Overview of mechanical properties of metastable complex concentrated alloys. Journal of Alloys and Compounds, 2020, 842, 155625.	2.8	24
20	The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 100-109.	2.6	23
21	Hot-rolled and continuously cooled bainitic steel with good strength–elongation combination. Materials Science and Technology, 2017, 33, 1026-1037.	0.8	20
22	Superplasticity in fine grained dual phase high entropy alloy. Materialia, 2020, 9, 100521.	1.3	20
23	Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy. Journal of Magnesium and Alloys, 2021, 9, 1406-1406.	5.5	20
24	Effect of initial orientation on twinning in commercially pure titanium. Philosophical Magazine, 2017, 97, 775-797.	0.7	19
25	Investigating the deformation mechanisms of a highly metastable high entropy alloy using in-situ neutron diffraction. Materials Today Communications, 2020, 23, 100858.	0.9	18
26	Direct evidence of the stacking fault-mediated strain hardening phenomenon. Applied Physics Letters, 2021, 119, .	1.5	18
27	Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation. Materialia, 2019, 6, 100310.	1.3	16
28	Characterization of cast stainless steel weld pools by using ball indentation technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 389-393.	2.6	15
29	Ultrasonic spot welding of dissimilar Al 6022 and Al 7075 alloys. Journal of Materials Processing Technology, 2020, 278, 116460.	3.1	15
30	Friction stir gradient alloying: A novel solid-state high throughput screening technique for high entropy alloys. Materials Today Communications, 2020, 23, 100869.	0.9	14
31	Immiscible nanostructured copper-aluminum-niobium alloy with excellent precipitation strengthening upon friction stir processing and aging. Scripta Materialia, 2019, 164, 42-47.	2.6	13
32	Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138918.	2.6	13
33	Microstructural Evolution and Deformation Behavior of Ni-Si- and Co-Si-Containing Metastable High Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 179-190.	1.1	10
34	In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5813-5832.	1.1	9
35	Initial texture dependence of nanocrystalline omega phase formation during high pressure torsion of commercially pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140687.	2.6	8
36	Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Scientific Reports, 2021, 11, 1579.	1.6	8

#	Article	IF	CITATIONS
37	Local deformation heterogeneity in cyclically deformed interstitial free steel. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 110-119.	1.7	5
38	A synchrotron X-ray and electron backscatter diffraction based investigation on deformation and failure micro-mechanisms of monotonic and cyclic loading in titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 143-153.	2.6	3
39	Achieving Forced Mixing in Cu-Based Immiscible Alloys via Friction Stir Processing. Minerals, Metals and Materials Series, 2019, , 199-208.	0.3	3