Paramita Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2548161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells, 2022, 11, 708.	1.8	8
2	Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function. Cancer Research, 2022, 82, 1969-1990.	0.4	21
3	Intracellular Acetyl CoA Potentiates the Therapeutic Efficacy of Antitumor CD8+ T Cells. Cancer Research, 2022, 82, 2640-2655.	0.4	13
4	Overcoming PD-1 Inhibitor Resistance with a Monoclonal Antibody to Secreted Frizzled-Related Protein 2 in Metastatic Osteosarcoma. Cancers, 2021, 13, 2696.	1.7	6
5	Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor TÂcell response. Cell Reports, 2021, 35, 109076.	2.9	35
6	Comparative analysis of antibodies to SARS-CoV-2 between asymptomatic and convalescent patients. IScience, 2021, 24, 102489.	1.9	11
7	Alterations of lipid metabolism provide serologic biomarkers for the detection of asymptomatic versus symptomatic COVID-19 patients. Scientific Reports, 2021, 11, 14232.	1.6	28
8	CD38: Modulating Histone Methyltransferase EZH2 Activity in SLE. Trends in Immunology, 2020, 41, 187-189.	2.9	5
9	Pro-Survival Lipid Sphingosine-1-Phosphate Metabolically Programs T Cells to Limit Anti-tumor Activity. Cell Reports, 2019, 28, 1879-1893.e7.	2.9	71
10	Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. Journal of Biological Chemistry, 2019, 294, 9198-9212.	1.6	28
11	Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clinical Cancer Research, 2019, 25, 1036-1049.	3.2	41
12	Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood, 2019, 133, 266-279.	0.6	55
13	CD38-NAD+-Sirt1 axis in T cell immunotherapy. Aging, 2019, 11, 8743-8744.	1.4	6
14	CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metabolism, 2018, 27, 85-100.e8.	7.2	197
15	Lack of <i>p53</i> Augments Antitumor Functions in Cytolytic T Cells. Cancer Research, 2016, 76, 5229-5240.	0.4	34
16	Blocking TCR restimulation induced necroptosis in adoptively transferred T cells improves tumor control. Oncotarget, 2016, 7, 69371-69383.	0.8	10
17	Dynamic Metabolism in Immune Response. Journal of Immunology Research and Therapy, 2016, 1, 37-48.	1.0	1
18	Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells. PLoS ONE, 2015, 10, e0145217.	1.1	10

#	Article	IF	CITATIONS
19	A copper chelate selectively triggers apoptosis in myeloid-derived suppressor cells in a drug-resistant tumor model and enhances antitumor immune response. Immunopharmacology and Immunotoxicology, 2014, 36, 165-175.	1.1	9
20	The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. European Journal of Pharmaceutical Sciences, 2014, 51, 96-109.	1.9	49
21	ROS and RNS induced apoptosis through p53 and iNOS mediated pathway by a dibasic hydroxamic acid molecule in leukemia cells. European Journal of Pharmaceutical Sciences, 2014, 52, 146-164.	1.9	18
22	Selective induction of apoptosis in various cancer cells irrespective of drug sensitivity through a copper chelate, copper N-(2 hydroxy acetophenone) glycinate: crucial involvement of glutathione. BioMetals, 2013, 26, 517-534.	1.8	9
23	A novel manganese complex, Mn-(II) N-(2-hydroxy acetophenone) glycinate overcomes multidrug-resistance in cancer. European Journal of Pharmaceutical Sciences, 2013, 49, 737-747.	1.9	19
24	Myeloid derived suppressor cells (MDSCs) can induce the generation of Th17 response from naÃ ⁻ ve CD4+ T cells. Immunobiology, 2013, 218, 718-724.	0.8	43
25	Targeting the mitochondrial pathway to induce apoptosis/necrosis through ROS by a newly developed Schiff's base to overcome MDR in cancer. Biochimie, 2012, 94, 166-183.	1.3	15
26	Reprogramming of TAM toward proimmunogenic type through regulation of MAP kinases using a redox-active copper chelate. Journal of Leukocyte Biology, 2012, 91, 609-619.	1.5	35
27	The molecular interaction of a copper chelate with human P-glycoprotein. Molecular and Cellular Biochemistry, 2012, 364, 309-320.	1.4	18
28	Iron N-(2-hydroxy acetophenone) glycinate (FeNG), a non-toxic glutathione depletor circumvents doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo. BioMetals, 2012, 25, 149-163.	1.8	12
29	An in vitro and in vivo study of a novel zinc complex, zinc N-(2-hydroxyacetophenone)glycinate to overcome multidrug resistance in cancer. Dalton Transactions, 2011, 40, 10873.	1.6	21
30	Redox active copper chelate overcomes multidrug resistance in T-lymphoblastic leukemia cell by triggering apoptosis. Molecular BioSystems, 2011, 7, 1701.	2.9	33
31	Overcoming multidrug resistance (MDR) in cancer in vitro and in vivo by a quinoline derivative. Biomedicine and Pharmacotherapy, 2011, 65, 387-394.	2.5	28
32	Targeting Mitochondrial Cell Death Pathway to Overcome Drug Resistance with a Newly Developed Iron Chelate. PLoS ONE, 2010, 5, e11253.	1.1	44
33	A Novel Copper Chelate Modulates Tumor Associated Macrophages to Promote Anti-Tumor Response of T Cells. PLoS ONE, 2009, 4, e7048.	1.1	38
34	Synthesis, Xâ€ray powder structure analysis and biological properties of a mononuclear Cu(II) complex of Nâ€2â€hydroxyhippuric acid. Applied Organometallic Chemistry, 2009, 23, 527-534.	1.7	2
35	Synthesis, spectroscopic characterization, X-ray powder structure analysis, DFT study and in vitro anticancer activity of N-(2-methoxyphenyl)-3-methoxysalicylaldimine. Journal of Molecular Structure, 2009, 932, 90-96.	1.8	58