Kazuki Terauchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547761/publications.pdf

Version: 2024-02-01

10	607	1040056	940533
18	697	9	16
papers	citations	h-index	g-index
20	20	20	491
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16377-16381.	7.1	226
2	A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO Journal, 2007, 26, 4029-4037.	7.8	223
3	Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO Journal, 2011, 30, 68-78.	7.8	76
4	Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation. Scientific Reports, 2016, 6, 32443.	3.3	32
5	Loss of Cytochrome cM Stimulates Cyanobacterial Heterotrophic Growth in the Dark. Plant and Cell Physiology, 2015, 56, 334-345.	3.1	28
6	Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering. Scientific Reports, 2016, 6, 35567.	3.3	24
7	Cooperative Binding of KaiB to the KaiC Hexamer Ensures Accurate Circadian Clock Oscillation in Cyanobacteria. International Journal of Molecular Sciences, 2019, 20, 4550.	4.1	18
8	<i>Synechocystis</i> KaiC3 Displays Temperature- and KaiB-Dependent ATPase Activity and Is Important for Growth in Darkness. Journal of Bacteriology, 2020, 202, .	2.2	13
9	Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochemical and Biophysical Research Communications, 2016, 470, 704-709.	2.1	12
10	Pressure accelerates the circadian clock of cyanobacteria. Scientific Reports, 2019, 9, 12395.	3.3	11
11	Soft X-Ray Imaging of Cellular Carbon and Nitrogen Distributions in Heterocystous Cyanobacteria. Plant Physiology, 2018, 177, 52-61.	4.8	7
12	Phosphorylation at Thr432 induces structural destabilization of the <scp>CII</scp> ring in the circadian oscillator KaiC. FEBS Letters, 2018, 592, 36-45.	2.8	6
13	Overall structure of fully assembled cyanobacterial KaiABC circadian clock complex by an integrated experimental-computational approach. Communications Biology, 2022, 5, 184.	4.4	5
14	Regulation mechanisms of the dual ATPase in KaiC. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119627119.	7.1	5
15	Isolation of cyanobacterial mutants exhibiting growth defects under microoxic conditions by transposon tagging mutagenesis of <i>Synechocystis</i> sp. PCC 6803. Journal of General and Applied Microbiology, 2017, 63, 131-138.	0.7	3
16	Mutation of alanine-422 in KaiC leads to a low amplitude of rhythm in the reconstituted cyanobacterial circadian clock. Journal of General and Applied Microbiology, 2020, 66, 140-146.	0.7	3
17	BN-PAGE analysis of cyanobacterial clock protein KaiC. Denki Eido, 2017, 61, 107-110.	0.0	O
18	Circadian clock in cyanobacteria. , 2022, , 47-59.		0