Robert Boes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547711/publications.pdf Version: 2024-02-01

POREDT ROES

#	Article	IF	CITATIONS
1	Two-Phase Flow Characteristics of Stepped Spillways. Journal of Hydraulic Engineering, 2003, 129, 661-670.	1.5	228
2	Hydraulic Design of Stepped Spillways. Journal of Hydraulic Engineering, 2003, 129, 671-679.	1.5	178
3	Backwater Rise due to Large Wood Accumulations. Journal of Hydraulic Engineering, 2018, 144, .	1.5	75
4	Turbulence Characteristics in Supercritical Open Channel Flows: Effects of Froude Number and Aspect Ratio. Journal of Hydraulic Engineering, 2014, 140, .	1.5	48
5	Laboratory Flume Experiments on the Formation of Spanwise Large Wood Accumulations: Part II—Effect on local scour. Water Resources Research, 2019, 55, 4871-4885.	4.2	48
6	Assessing the energy potential of modernizing the European hydropower fleet. Energy Conversion and Management, 2021, 246, 114655.	9.2	48
7	Vortex-Induced Air Entrainment Rates at Intakes. Journal of Hydraulic Engineering, 2015, 141, .	1.5	38
8	Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 2. Application to field sites with direct bed load samples. Water Resources Research, 2016, 52, 7760-7778.	4.2	38
9	Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 1. Impulse counts and particle size identification. Water Resources Research, 2016, 52, 7744-7759.	4.2	35
10	An experimental investigation on louvres and angled bar racks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2018, 56, 59-75.	1.7	32
11	Hydraulic structures: a positive outlook into the future. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 299-310.	1.7	31
12	Trajectories and air flow features of ski jump-generated jets. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 336-346.	1.7	31
13	Sediment transport in highâ€speed flows over a fixed bed: 1. Particle dynamics. Earth Surface Processes and Landforms, 2017, 42, 1365-1383.	2.5	31
14	Spatial Impulse Wave Generation and Propagation. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, .	1.2	31
15	Hydropower Potential in the Periglacial Environment of Switzerland under Climate Change. Sustainability, 2018, 10, 2794.	3.2	30
16	Laboratory Flume Experiments on the Formation of Spanwise Large Wood Accumulations: I. Effect on Backwater Rise. Water Resources Research, 2019, 55, 4854-4870.	4.2	30
17	Fish guidance structures: hydraulic performance and fish guidance efficiencies. Journal of Ecohydraulics, 2020, 5, 113-131.	3.1	30
18	Sediment transport in highâ€speed flows over a fixed bed: 2. Particle impacts and abrasion prediction. Earth Surface Processes and Landforms, 2017, 42, 1384-1396.	2.5	28

ROBERT BOES

#	Article	IF	CITATIONS
19	Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 566-581.	1.7	26
20	Laboratory investigation on measuring suspended sediment by portable laser diffractometer (LISST) focusing on particle shape. Geo-Marine Letters, 2013, 33, 485-498.	1.1	25
21	High-velocity air-water flows downstream of sluice gates including selection of optimum phase-detection probe. International Journal of Multiphase Flow, 2019, 116, 203-220.	3.4	23
22	Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water (Switzerland), 2019, 11, 1956.	2.7	22
23	Risk reduction measures of large wood accumulations at bridges. Environmental Fluid Mechanics, 2020, 20, 485-502.	1.6	21
24	Deflector Effect on Chute Flow. Journal of Hydraulic Engineering, 2013, 139, 444-449.	1.5	19
25	Development of Probabilistic Dam Breach Model Using Bayesian Inference. Water Resources Research, 2018, 54, 4376-4400.	4.2	17
26	Velocity Fields at Horizontal Bar Racks as Fish Guidance Structures. Water (Switzerland), 2020, 12, 280.	2.7	16
27	Impulse Wave Runup on Steep to Vertical Slopes. Journal of Marine Science and Engineering, 2019, 7, 8.	2.6	15
28	Head Losses of Horizontal Bar Racks as Fish Guidance Structures. Water (Switzerland), 2020, 12, 475.	2.7	15
29	Continuous Seasonal and Large-Scale Periglacial Reservoir Sedimentation. Sustainability, 2018, 10, 3265.	3.2	14
30	Swimming Behavior of Downstream Moving Fish at Innovative Curved-Bar Rack Bypass Systems for Fish Protection at Water Intakes. Water (Switzerland), 2020, 12, 3244.	2.7	13
31	Numerical embankment breach modelling including seepage flow effects. Journal of Hydraulic Research/De Recherches Hydrauliques, 2017, 55, 480-490.	1.7	12
32	Assessment of flow field and sediment flux at alpine desanding facilities. International Journal of River Basin Management, 2017, 15, 287-295.	2.7	11
33	An experimental investigation on fish guidance structures with horizontal bars. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 516-530.	1.7	11
34	Effects of Secondary Currents on Turbulence Characteristics of Supercritical Open Channel Flows at Low Aspect Ratios. Water (Switzerland), 2020, 12, 3233.	2.7	11
35	Side-Channel Flow: Physical Model Studies. Journal of Hydraulic Engineering, 2015, 141, .	1.5	9
36	Erosion pattern of artificial gravel deposits. International Journal of Sediment Research, 2018, 33, 57-67.	3.5	9

ROBERT BOES

#	Article	IF	CITATIONS
37	Hydraulic performance of fish guidance structures with curved bars – Part 1: head loss assessment. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 807-818.	1.7	9
38	Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels. Water (Switzerland), 2020, 12, 469.	2.7	9
39	Numerical simulation of air entrainment in uniform chute flow. Journal of Hydraulic Research/De Recherches Hydrauliques, 2021, 59, 378-391.	1.7	9
40	Experimental study on the flow characteristics of unstructured block ramps. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 600-613.	1.7	8
41	Conceptual Approach for Positioning of Fish Guidance Structures Using CFD and Expert Knowledge. Sustainability, 2019, 11, 1646.	3.2	8
42	Stability of Unstructured Block Ramps. Journal of Hydraulic Engineering, 2017, 143, .	1.5	7
43	How does sediment supply influence refugia availability in river widenings?. Journal of Ecohydraulics, 2021, 6, 121-138.	3.1	7
44	Enhancing an unsupervised clustering algorithm with a spatial contiguity constraint for river habitat analysis. Ecohydrology, 2021, 14, e2285.	2.4	7
45	Abrasion prediction at Asahi sediment bypass tunnel based on Ishibashi's formula. Journal of Applied Water Engineering and Research, 2018, 6, 125-138.	1.8	6
46	Modeling Streambank and Artificial Gravel Deposit Erosion for Sediment Replenishment. Water (Switzerland), 2018, 10, 508.	2.7	6
47	Hydraulic performance of fish guidance structures with curved bars – Part 2: flow fields. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 819-830.	1.7	6
48	Protection and guidance of downstream moving fish with horizontal bar rack bypass systems. Ecological Engineering, 2022, 178, 106584.	3.6	6
49	Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs. Water (Switzerland), 2022, 14, 1977.	2.7	6
50	Run-Up of Impulse Wave Trains on Steep to Vertical Slopes. Journal of Hydraulic Engineering, 2020, 146,	1.5	5
51	Morphological Response of Channelized, Sinuous Gravelâ€Bed Rivers to Sediment Replenishment. Water Resources Research, 2021, 57, e2020WR029178.	4.2	5
52	Protection and Guidance of Downstream Moving Fish with Electrified Horizontal Bar Rack Bypass Systems. Water (Switzerland), 2021, 13, 2786.	2.7	5
53	Field Investigation of Hydraulics and Fish Guidance Efficiency of a Horizontal Bar Rack-Bypass System. Water (Switzerland), 2022, 14, 776.	2.7	5
54	An experimental study on fish-friendly trashracks: part I & II. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 144-146.	1.7	4

Robert Boes

#	Article	IF	CITATIONS
55	Measuring suspended sediments in periglacial reservoirs using water samples, laser in-situ scattering and transmissometry and acoustic Doppler current profiler. International Journal of River Basin Management, 2017, 15, 413-431.	2.7	4
56	Morphological development of river widenings with variable sediment supply. E3S Web of Conferences, 2018, 40, 02007.	0.5	4
57	Design of Desanding Facilities for Hydropower Schemes Based on Trapping Efficiency. Water (Switzerland), 2022, 14, 520.	2.7	3
58	Effect of Water Withdrawal on the Appearance and Sound Level of Waterfalls. Water Resources Research, 2021, 57, e2021WR030980.	4.2	2
59	Fish Guidance Structures with Narrow Bar Spacing: Physical Barriers. , 2022, , 91-98.		2
60	Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 735-736.	1.7	1
61	Effect of Macrorough Sidewalls on Flow Resistance in Steep Rough Channels. Water Resources Research, 0, , .	4.2	1
62	Stepped chute of TrÃ ¤ gslet Dam: physical model study. Journal of Applied Water Engineering and Research, 2015, 3, 166-176.	1.8	0
63	Discussion of "Reservoir Level Rise under Extreme Driftwood Blockage at Ogee Crest―by LoÃ⁻c Bénet, Giovanni De Cesare, and Michael Pfister. Journal of Hydraulic Engineering, 2021, 147, 07021012.	1.5	Ο
64	Fish Guidance Structure with Wide Bar Spacing: Mechanical Behavioural Barrier. , 2022, , 99-104.		0