
Kun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human TDP1, APE1Âand TREX1 repair 3′-DNA–peptide/protein cross-links arising from abasic sites <i>in vitro</i> . Nucleic Acids Research, 2022, 50, 3638-3657.	6.5	17
2	Human TREX1 Repairs 3′-End DNA Lesions <i>in Vitro</i> . Chemical Research in Toxicology, 2022, 35, 935-939.	1.7	3
3	InÂvitro eradication of abasic site-mediated DNA–peptide/protein cross-links by Escherichia coli long-patch base excision repair. Journal of Biological Chemistry, 2022, 298, 102055.	1.6	2
4	The Pharmacological Mechanism of Xiyanping Injection for the Treatment of Novel Coronavirus Pneumonia (COVID-19): Based on Network Pharmacology Strategy. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-18.	0.5	0
5	Synthesis of mitochondria-targeted coumarin-3-carboxamide fluorescent derivatives: Inhibiting mitochondrial TrxR2 and cell proliferation on breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2021, 33, 127750.	1.0	8
6	The Long Noncoding RNA Hepatocyte Nuclear Factor 4 <i>α</i> Antisense RNA 1 Negatively Regulates Cytochrome P450 Enzymes in Huh7 Cells via Histone Modifications. Drug Metabolism and Disposition, 2021, 49, 361-368.	1.7	9
7	Mechanisms of DNAâ^'protein cross-link formation and repair. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140669.	1.1	14
8	DNA–Protein Cross-Link Formation in Nucleosome Core Particles Treated with Methyl Methanesulfonate. Chemical Research in Toxicology, 2019, 32, 2144-2151.	1.7	15
9	Reactivity of N3-Methyl-2′-Deoxyadenosine in Nucleosome Core Particles. Chemical Research in Toxicology, 2019, 32, 2118-2124.	1.7	11
10	Positional Dependence of DNA Hole Transfer Efficiency in Nucleosome Core Particles. Journal of the American Chemical Society, 2019, 141, 10154-10158.	6.6	9
11	Effect of Nucleosome Assembly on Alkylation by a Dynamic Electrophile. Chemical Research in Toxicology, 2019, 32, 917-925.	1.7	2
12	Synthesis, mitochondrial localization of fluorescent derivatives of cinnamamide as anticancer agents. European Journal of Medicinal Chemistry, 2019, 170, 45-54.	2.6	20
13	Effect of Histone Lysine Methylation on DNA Lesion Reactivity in Nucleosome Core Particles. Chemical Research in Toxicology, 2019, 32, 910-916.	1.7	12
14	The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduction and Targeted Therapy, 2019, 4, 63.	7.1	31
15	Reactivity of the Major Product of C5′â€Oxidative DNA Damage in Nucleosome Core Particles. ChemBioChem, 2019, 20, 672-676.	1.3	2
16	Histone Tail Sequences Balance Their Role in Genetic Regulation and the Need To Protect DNA against Destruction in Nucleosome Core Particles Containing Abasic Sites. ChemBioChem, 2019, 20, 78-82.	1.3	10
17	Target ROS to induce apoptosis and cell cycle arrest by 5,7-dimethoxy-1,4-naphthoquinone derivative. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 273-277.	1.0	40
18	Suppression of <scp>MAPK</scp> signaling in <scp>BRAF</scp> â€activated <scp>PTEN</scp> â€deficient melanoma by blocking βâ€catenin signaling in cancerâ€associated fibroblasts. Pigment Cell and Melanoma Research, 2018, 31, 297-307.	1.5	13

Kun Yang

#	Article	IF	CITATIONS
19	Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA–protein cross-links in nucleosome core particles and cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11212-E11220.	3.3	45
20	Enhanced Cleavage at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. ChemBioChem, 2018, 19, 2061-2065.	1.3	12
21	Anti-acute myeloid leukemia activity of 2-chloro-3-alkyl-1,4-naphthoquinone derivatives through inducing mtDNA damage and GSH depletion. Bioorganic and Medicinal Chemistry, 2018, 26, 4191-4200.	1.4	8
22	Rotational Effects within Nucleosome Core Particles on Abasic Site Reactivity. Biochemistry, 2018, 57, 3945-3952.	1.2	17
23	YAP and WWTR1: New targets for skin cancer treatment. Cancer Letters, 2017, 396, 30-41.	3.2	24
24	Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth. PLoS ONE, 2016, 11, e0160425.	1.1	26
25	Activating β atenin signaling in <scp>CD</scp> 133â€positive dermal papilla cells increases hair inductivity. FEBS Journal, 2016, 283, 2823-2835.	2.2	25
26	Targeted deactivation of cancer-associated fibroblasts by β-catenin ablation suppresses melanoma growth. Tumor Biology, 2016, 37, 14235-14248.	0.8	26
27	CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth. Biochemical Journal, 2016, 473, 3291-3305.	1.7	16
28	Dermal fibroblasts induce cell cycle arrest and block epithelial–mesenchymal transition to inhibit the early stage melanoma development. Cancer Medicine, 2016, 5, 1566-1579.	1.3	35
29	Developing Anticancer Ferric Prodrugs Based on the N-Donor Residues of Human Serum Albumin Carrier IIA Subdomain. Journal of Medicinal Chemistry, 2016, 59, 7497-7511.	2.9	63
30	Dermal sheath cells contribute to postnatal hair follicle growth and cycling. Journal of Dermatological Science, 2016, 82, 129-131.	1.0	11
31	Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma. Journal of Cancer, 2015, 6, 717-726.	1.2	91