
Rhimou El Kammouni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Fixation on Magnetic Properties of Glass-Coated Magnetic Microwires for Biomedical Applications. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	15
2	Influence of Magnetostriction of NiFe Electroplated Film on the Noise of Fluxgate. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	11
3	Magnetic Properties of Glass-Coated Amorphous and Nanocrystalline FeMoBCu Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	6
4	Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires. Journal of Magnetism and Magnetic Materials, 2014, 368, 126-132.	2.3	10
5	Effects of Annealing Treatment on Low and High Frequency Magnetic Properties of Soft/Hard Biphase FeSiB/CoNi Microwires. IEEE Transactions on Magnetics, 2013, 49, 34-37.	2.1	8
6	Microwave behavior in CoFeâ€based single―and twoâ€phase magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 520-525.	1.8	11
7	Nanostructured Magnetoimpedance Multilayers with Different Thickness of FeNi Components. Solid State Phenomena, 0, 215, 342-347.	0.3	5
8	High Temperature Properties of CoFe/CoNi and Fe/CoNi Biphase Microwires. Solid State Phenomena, 0, 233-234, 265-268.	0.3	2