
Katsuhiro Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia-Independent Overexpression of Hypoxia-Inducible Factor 1α as an Early Change in Mouse Hepatocarcinogenesis. Cancer Research, 2006, 66, 11263-11270.	0.4	99
2	Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis, 2003, 24, 435-442.	1.3	72
3	Frequent K-ras mutations and absence of p53 mutations in mucin-producing tumors of the pancreas. Journal of Surgical Oncology, 1994, 55, 84-91.	0.8	63
4	Activated hepatic stellate cells overexpress p75NTR after partial hepatectomy and undergo apoptosis on nerve growth factor stimulation. Liver International, 2006, 26, 595-603.	1.9	48
5	Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis. Molecular Carcinogenesis, 2006, 45, 901-913.	1.3	41
6	Production of nerve growth factor by mouse hepatocellular carcinoma cells and expression of TrkA in tumor-associated arteries in mice. Gastroenterology, 2002, 122, 1978-1986.	0.6	32
7	Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. International Journal of Cancer, 2005, 114, 39-45.	2.3	31
8	Absence ofp53 mutations and various frequencies of ki-ras exon 1 mutations in rat hepatic tumors induced by different carcinogens. Molecular Carcinogenesis, 1994, 10, 45-51.	1.3	30
9	Immunocytochemical localization of BGP in human bones in various developmental stages and pathological conditions. Virchows Archiv A, Pathological Anatomy and Histopathology, 1989, 415, 459-466.	1.4	29
10	Acute Colchicine Poisoning Causes Endotoxemia via the Destruction of Intestinal Barrier Function: The Curative Effect of Endotoxin Prevention in a Murine Model. Digestive Diseases and Sciences, 2020, 65, 132-140.	1.1	28
11	Serine 727 phosphorylation of STAT3: An early change in mouse hepatocarcinogenesis induced by neonatal treatment with diethylnitrosamine. Molecular Carcinogenesis, 2014, 53, 67-76.	1.3	25
12	Molecular pathology of early stage chemically induced hepatocarcinogenesis. Pathology International, 2009, 59, 605-622.	0.6	24
13	Abundant TGFα a precursor and EGF receptor expression as a possible mechanism for the preferential growth of carcinogeninduced preneoplastic and neoplastic hepatocytes in rats. Carcinogenesis, 1994, 15, 1689-1694.	1.3	23
14	Roles of the Pas1 and Par2 genes in determination of the unique, intermediate susceptibility of BALB/cByJ mice to urethane-induction of lung carcinogenesis: Differential effects on tumor multiplicity, size and Kras2 mutations. Oncogene, 1997, 15, 1833-1840.	2.6	23
15	Mutational activation of c-Ha-ras genes in intraductal proliferation induced byN-nitroso-N-methylurea in rat mammary glands. International Journal of Cancer, 1991, 49, 140-144.	2.3	18
16	Recovery from ultraviolet-induced growth arrest of primary rat hepatocytes byp53 antisense oligonucleotide treatment. Molecular Carcinogenesis, 1994, 9, 167-174.	1.3	17
17	Cavernous Sinus Invasion by Pituitary Adenomas. Neurologia Medico-Chirurgica, 1995, 35, 17-21.	1.0	17
18	Mutational Activation of H-rasand K-rasGenes Is Absent inN-Nitroso-N-methylurea-induced Liver Tumors in Rats. Japanese Journal of Cancer Research, 1990, 81, 437-439.	1.7	16

KATSUHIRO OGAWA

#	Article	IF	CITATIONS
19	Frequent deletion in chromosome 4 and duplication of chromosome 15 in liver epithelial cells derived from long-term culture of C3H mouse hepatocytes. International Journal of Cancer, 1994, 59, 108-113.	2.3	16
20	Gain of chromosomes 15 and 19 is frequent in both mouse hepatocellular carcinoma cell lines and primary tumors, but loss of chromosomes 4 and 12 is detected only in the cell lines. Carcinogenesis, 1999, 20, 2083-2088.	1.3	16
21	Loss of imprinting of the insulin-like growth factor II gene in mouse hepatocellular carcinoma cell lines. Molecular Carcinogenesis, 1998, 23, 248-253.	1.3	14
22	Role of the <i>Braf</i> V637E mutation in hepatocarcinogenesis induced by treatment with diethylnitrosamine in neonatal B6C3F1 mice. Molecular Carcinogenesis, 2017, 56, 478-488.	1.3	14
23	Alternatively-Spliced p53 mRNA in the FAA-HTC1 Rat Hepatoma Cell Line without the Splice Site Mutations Cell Structure and Function, 1992, 17, 427-432.	0.5	14
24	Prohibitin Expression Is Decreased in the Regenerating Liver but Not in Chemically Induced Hepatic Tumors in Rats. Japanese Journal of Cancer Research, 1997, 88, 1155-1164.	1.7	13
25	Detection ofp53 gene mutations in rat hepatocellular carcinoma cell lines by denaturing gradient gel electrophoresis. Molecular Carcinogenesis, 1993, 7, 257-262.	1.3	12
26	Loss of heterozygosity at loci on chromosome 4, a common genetic event during the spontaneous immortalization of mouse embryonic fibroblasts. Molecular Carcinogenesis, 1997, 19, 17-24.	1.3	12
27	Hypothermiaâ€induced activation of the splenic platelet pool as a risk factor for thrombotic disease in a mouse model. Journal of Thrombosis and Haemostasis, 2019, 17, 1762-1771.	1.9	12
28	Infrequent loss of heterozygosity and mutation of thep53 gene in immortal and transformed mouse embryo fibroblasts. Molecular Carcinogenesis, 1994, 10, 52-57.	1.3	9
29	A Case of Sudden Infant Death Due to Incomplete Kawasaki Disease. Journal of Forensic Sciences, 2016, 61, S259-64.	0.9	8
30	Hemangiopericytoma of the Sigmoid Mesentery: Report of a case with immunohistochemical findings. Surgery Today, 1997, 27, 64-67.	0.7	7
31	Loss of Igf2 Imprinting in Monoclonal Mouse Hepatic Tumor Cells Is Not Associated with Abnormal Methylation Patterns for the H19, Igf2, andKvlqt1 Differentially Methylated Regions. Journal of Biological Chemistry, 2003, 278, 6222-6228.	1.6	7
32	Resistance of primary cultured mouse hepatic tumor cells to cellular senescence despite expression of p16Ink4a, p19Arf, p53, and p21Waf1/Cip1. Molecular Carcinogenesis, 2001, 32, 9-18.	1.3	6
33	High Sensitivity of Neonatal Rat Hepatocytes to Retroviral-Mediated Gene Transfer and Their Transplantation into the Spleen of Adult Rat Cell Structure and Function, 1991, 16, 283-288.	0.5	6
34	Low p38 MAPK and JNK activation in cultured hepatocytes of DRH rats; a strain highly resistant to hepatocarcinogenesis. Molecular Carcinogenesis, 2007, 46, 758-765.	1.3	5
35	Low selection of preneoplastic hepatocytes after treatment with the 2-acetylaminofluorene diet-partial hepatectomy regimen in the liver of hepatocarcinogenesis-resistant DRH strain rats. Oncology Reports, 2007, 17, 55-60.	1.2	5
36	Genotypic Differentiation of Intrahepatically Transplanted Hyperplastic Nodule Cells of Analbuminemic and Normal Rat Origin by Polymerase Chain Reaction. Japanese Journal of Cancer Research, 1990, 81, 711-714.	1.7	4

#	Article	IF	CITATIONS
37	Complementary expression of glutamine synthetase and carbamoylphosphate synthetase I in ornithine carbamoyltransferase-deficient mouse liver (spf-ash mouse). Histochemistry and Cell Biology, 1997, 108, 489-494.	0.8	4
38	Treatment of hepatocellular carcinoma with autologous platelets encapsulating sorafenib or lenvatinib: A novel therapy exploiting tumorâ€platelet interactions. International Journal of Cancer, 2022, 150, 1640-1653.	2.3	4
39	Brain stem hemorrhage due to cerebral amyloid angiopathy: The autopsy of a patient with Alzheimer's disease at a young age. Legal Medicine, 2014, 16, 98-101.	0.6	3
40	Overproduction of thrombopoietin byBRAFV600Eâ€mutated mouse hepatocytes and contribution of thrombopoietin to hepatocarcinogenesis. Cancer Science, 2019, 110, 2748-2759.	1.7	3
41	Different growth capacity between infant and adult mouse hepatocytes in vitro correlates to the cyclin D1 level without relation to oxidative DNA damage. Liver International, 2005, 25, 1036-1043.	1.9	2
42	Unique Properties of Hepatocarcinogenesis-Resistant DRH Rat Hepatocytes Linked or Not Linked to the <i>Drh1</i> Locus on Rat Chromosome 1. International Journal of Hepatology, 2011, 2011, 1-9.	0.4	2
43	Analysis of Pharmaceutical Interventions Administered to Inpatients who were taking Dietary Supplements and Establishment of a Management Algorithm. Iryo Yakugaku (Japanese Journal of) Tj ETQq1 1 0.7	'84û&4 rgI	BT ‡O verlock
44	Fine mapping of smallest common regions of deletion on chromosome 12 in liver epithelial and hepatocellular carcinoma cell lines from B6C3F1 and C3B6F1 mice. , 2000, 86, 251-254.		1
45	Chained nuclei and python pattern in skeletal muscle cells as histological markers for electrical injury. Legal Medicine, 2018, 32, 75-78.	0.6	1
46	UTILIZATION OF MOSAIC ANIMALS FOR THE STUDIES OF HEPATIC CARCINOGENESIS. Journal of Toxicologic Pathology, 1988, 1, 61-66.	0.3	0
47	FINE STRUCTURAL CHANGES OF THE ORGANELLES DURING ENZYME INDUCTION IN HEPATOCYTES. Journal of Toxicologic Pathology, 1989, 2, 1-9.	0.3	0