

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547242/publications.pdf Version: 2024-02-01

Vi Hii

#	Article	IF	CITATIONS
1	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
2	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	6.6	456
3	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
4	Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets. Nano Letters, 2018, 18, 7372-7377.	4.5	308
5	Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Research, 2019, 12, 1229-1249.	5.8	301
6	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	4.5	223
7	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 4868-4876.	7.3	222
8	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283.	7.3	213
9	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846.	4.5	206
10	Walnutâ€Like Multicore–Shell MnO Encapsulated Nitrogenâ€Rich Carbon Nanocapsules as Anode Material for Longâ€Cycling and Softâ€Packed Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1800003.	7.8	191
11	Highly Branched VS ₄ Nanodendrites with 1D Atomicâ€Chain Structure as a Promising Cathode Material for Longâ€Cycling Magnesium Batteries. Advanced Materials, 2018, 30, e1802563.	11.1	187
12	In Situ Thermal Synthesis of Inlaid Ultrathin MoS ₂ /Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.	3.2	166
13	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
14	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
15	Oneâ€Step Synthesis of 2â€Ethylhexylamine Pillared Vanadium Disulfide Nanoflowers with Ultralarge Interlayer Spacing for Highâ€Performance Magnesium Storage. Advanced Energy Materials, 2019, 9, 1900145.	10.2	131
16	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	7.8	119
17	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO _{2–<i>x</i>} Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano, 2018, 12, 12492-12502.	7.3	116
18	Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO ₂ Reduction. Nano Letters, 2021, 21, 2650-2657.	4.5	95

#	Article	IF	CITATIONS
19	All-polymer particulate slurry batteries. Nature Communications, 2019, 10, 2513.	5.8	91
20	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	5.2	85
21	Nitrogen-Doped Carbon Nanotube Forests Planted on Cobalt Nanoflowers as Polysulfide Mediator for Ultralow Self-Discharge and High Areal-Capacity Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 7949-7954.	4.5	85
22	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
23	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Research, 2019, 12, 1713-1719.	5.8	64
24	Self-Assembly of Polymer Tethered Molecular Nanoparticle Shape Amphiphiles in Selective Solvents. Macromolecules, 2015, 48, 3112-3120.	2.2	63
25	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie - International Edition, 2020, 59, 5151-5158.	7.2	62
26	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	2.8	57
27	Co _x Fe _y N nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12489-12497.	5.2	56
28	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
29	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	5.8	51
30	Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. Journal of Materials Chemistry A, 2018, 6, 20076-20082.	5.2	51
31	Li ₃ V ₂ (PO ₄) ₃ encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale, 2016, 8, 7408-7415.	2.8	49
32	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
33	Rh/Al Nanoantenna Photothermal Catalyst for Wide-Spectrum Solar-Driven CO ₂ Methanation with Nearly 100% Selectivity. Nano Letters, 2021, 21, 8824-8830.	4.5	43
34	Quasi-Phthalocyanine Conjugated Covalent Organic Frameworks with Nitrogen-Coordinated Transition Metal Centers for High-Efficiency Electrocatalytic Ammonia Synthesis. Nano Letters, 2022, 22, 372-379.	4.5	43
35	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale, 2017, 9, 1972-1977.	2.8	42
36	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. Chemistry of Materials, 2019, 31, 4524-4535.	3.2	41

#	Article	IF	CITATIONS
37	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Research, 2018, 11, 6436-6446.	5.8	38
38	Crystalline Modulation Engineering of Ru Nanoclusters for Boosting Ammonia Electrosynthesis from Dinitrogen or Nitrate. ACS Applied Materials & Interfaces, 2022, 14, 17470-17478.	4.0	37
39	2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Research, 2022, 15, 3737-3752.	5.8	36
40	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. Journal of Materials Chemistry A, 2016, 4, 15041-15048.	5.2	35
41	Amphiphilic Block Copolymer Aided Design of Hybrid Assemblies of Nanoparticles: Nanowire, Nanoring, and Nanocluster. Macromolecules, 2016, 49, 3535-3541.	2.2	34
42	Chelation-assisted formation of multi-yolk–shell Co ₄ N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 20302-20309.	5.2	29
43	Single-Atom Metal Anchored Zr ₆ -Cluster-Porphyrin Framework Hollow Nanocapsules with Ultrahigh Active-Center Density for Electrocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 3340-3348.	4.5	29
44	Cucurbit[8]uril-Based Water-Soluble Supramolecular Dendronized Polymer: Evidence from Single Polymer Chain Morphology and Force Spectroscopy. ACS Macro Letters, 2017, 6, 139-143.	2.3	27
45	Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries. Nanoscale, 2019, 11, 13282-13288.	2.8	27
46	Photodriven Catalytic Hydrogenation of CO ₂ to CH ₄ with Nearly 100% Selectivity over Ag ₂₅ Clusters. Nano Letters, 2021, 21, 8693-8700.	4.5	27
47	2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. Small, 2022, 18, e2104556.	5.2	27
48	Dynamic Properties of DNA-Programmable Nanoparticle Crystallization. ACS Nano, 2016, 10, 7485-7492.	7.3	26
49	Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Physical Chemistry Chemical Physics, 2019, 21, 12087-12090.	1.3	25
50	Nanoparticle encapsulation in vesicles formed by amphiphilic diblock copolymers. Soft Matter, 2017, 13, 7840-7847.	1.2	21
51	Morphology of renormalization-group flow for the de Almeida–Thouless–Gardner universality class. Physical Review E, 2019, 99, 022132.	0.8	21
52	Nearâ€Infraredâ€Emissive Amphiphilic BODIPY Assemblies Manipulated by Chargeâ€Transfer Interaction: From Nanofibers to Nanorods and Nanodisks. Chemistry - an Asian Journal, 2017, 12, 3088-3095.	1.7	18
53	Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries. Nanoscale, 2020, 12, 12531-12540.	2.8	17
54	Tissue self-organization underlies morphogenesis of the notochord. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170320.	1.8	16

#	Article	IF	CITATIONS
55	Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks. Nano Research, 2020, 13, 2226-2232.	5.8	16
56	Hierarchical Colloidal Polymeric Structure from Surfactant-Like Amphiphiles in Selective Solvents. Langmuir, 2017, 33, 3427-3433.	1.6	15
57	Clustering and assembly dynamics of a one-dimensional microphase former. Soft Matter, 2018, 14, 4101-4109.	1.2	15
58	Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Research, 2022, 15, 4965-4972.	5.8	15
59	Correlation lengths in quasi-one-dimensional systems via transfer matrices. Molecular Physics, 2018, 116, 3345-3354.	0.8	14
60	Interplay between percolation and glassiness in the random Lorentz gas. Physical Review E, 2021, 103, L030104.	0.8	12
61	Mean-Field Caging in a Random Lorentz Gas. Journal of Physical Chemistry B, 2021, 125, 6244-6254.	1.2	11
62	Wet Chemistry Vitrification and Metalâ€toâ€5emiconductor Transition of 2D Gray Arsenene Nanoflakes. Advanced Functional Materials, 2021, 31, 2106529.	7.8	11
63	Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics. Soft Matter, 2018, 14, 2665-2670.	1.2	10
64	Chirp excitation technique to enhance microbubble displacement induced by ultrasound radiation force. Journal of the Acoustical Society of America, 2009, 125, 1410-1415.	0.5	7
65	Comment on "Kosterlitz-Thouless-type caging-uncaging transition in a quasi-one-dimensional hard disk systemâ€: Physical Review Research, 2021, 3, .	1.3	7
66	Local Dynamical Heterogeneity in Simple Glass Formers. Physical Review Letters, 2022, 128, 175501.	2.9	7
67	Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices. Physical Review B, 2021, 104, .	1.1	6
68	Dynamics around the site percolation threshold on high-dimensional hypercubic lattices. Physical Review E, 2019, 99, 022118.	0.8	5
69	The dimensional evolution of structure and dynamics in hard sphere liquids. Journal of Chemical Physics, 2022, 156, 134502.	1.2	5
70	Resolving the two-dimensional axial next-nearest-neighbor Ising model using transfer matrices. Physical Review B, 2021, 103, .	1.1	4
71	Promoting Z-to-E Thermal Isomerization of Azobenzene Derivatives by Noncovalent Interaction with Phosphorene: Theoretical Prediction and Experimental Study. Journal of Physical Chemistry C, 2020, 124, 15961-15968.	1.5	3
72	High-dimensional percolation criticality and hints of mean-field-like caging of the random Lorentz gas. Physical Review E, 2021, 104, 024137.	0.8	2

#	Article	IF	CITATIONS
73	Percolation thresholds on high-dimensional Dn and E8 -related lattices. Physical Review E, 2021, 103, 062115.	0.8	1
74	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie, 2020, 132, 5189-5196.	1.6	0