List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2546410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of Criteria to Design Efficient Choice Experiments. Journal of Marketing Research, 2006, 43, 409-419.	4.8	172
2	D-Optimal Split-Plot Designs With Given Numbers and Sizes of Whole Plots. Technometrics, 2003, 45, 235-245.	1.9	91
3	Optimal Split-Plot Designs. Journal of Quality Technology, 2001, 33, 436-450.	2.5	89
4	An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs. Journal of Business and Economic Statistics, 2009, 27, 279-291.	2.9	75
5	Models and optimal designs for conjoint choice experiments including a no-choice option. International Journal of Research in Marketing, 2008, 25, 94-103.	4.2	70
6	Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity. Marketing Science, 2009, 28, 122-135.	4.1	70
7	Outperforming Completely Randomized Designs. Journal of Quality Technology, 2004, 36, 12-26.	2.5	68
8	The usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 173-188.	1.5	59
9	Practical Inference from Industrial Split-Plot Designs. Journal of Quality Technology, 2006, 38, 162-179.	2.5	49
10	Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity. International Journal of Research in Marketing, 2011, 28, 378-388.	4.2	48
11	-optimal response surface designs in the presence of random block effects. Computational Statistics and Data Analysis, 2001, 37, 433-453.	1.2	44
12	Using the correct intervals for prediction: A tutorial on tolerance intervals for ordinary least-squares regression. Chemometrics and Intelligent Laboratory Systems, 2007, 87, 147-154.	3.5	42
13	Bayesian Conjoint Choice Designs for Measuring Willingness to Pay. Environmental and Resource Economics, 2011, 48, 129-149.	3.2	41
14	Recommendations on the use of Bayesian optimal designs for choice experiments. Quality and Reliability Engineering International, 2008, 24, 737-744.	2.3	39
15	A Mixed Integer Programming Model for Solving a Layout Problem in the Fashion Industry. Management Science, 1998, 44, 301-310.	4.1	35
16	Effect of Environmental and Altruistic Attitudes on Willingness-to-Pay for Organic and Fair Trade Coffee in Flanders. Sustainability, 2018, 10, 4496.	3.2	32
17	Generating Optimal Designs for Discrete Choice Experiments in <i>R</i> : The idefix Package. Journal of Statistical Software, 2020, 96, .	3.7	32
18	Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments. Transportation Research Part B: Methodological, 2010, 44, 1268-1289.	5.9	30

#	Article	IF	CITATIONS
19	Recursions for the individual model. Insurance: Mathematics and Economics, 1995, 16, 31-38.	1.2	27
20	The Impact of the Soccer Schedule on TV Viewership and Stadium Attendance. Journal of Sports Economics, 2018, 19, 82-112.	1.9	27
21	Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix. Journal of Choice Modelling, 2018, 29, 133-151.	2.3	24
22	Obtaining more information from conjoint experiments by best–worst choices. Computational Statistics and Data Analysis, 2010, 54, 1426-1433.	1.2	22
23	Fast algorithms to generate individualized designs for the mixed logit choice model. Transportation Research Part B: Methodological, 2014, 60, 1-15.	5.9	22
24	Using appropriate prior information to eliminate choice sets with a dominant alternative from D-efficient designs. Journal of Choice Modelling, 2012, 5, 22-45.	2.3	21
25	Patient Preferences for Multiple Myeloma Treatments: A Multinational Qualitative Study. Frontiers in Medicine, 2021, 8, 686165.	2.6	21
26	-optimal conjoint choice designs with no-choice options for a nested logit model. Journal of Statistical Planning and Inference, 2010, 140, 851-861.	0.6	19
27	-optimal run orders. Journal of Statistical Planning and Inference, 2001, 98, 293-310.	0.6	18
28	The state of the art of discrete choice experiments in food research. Food Quality and Preference, 2022, 102, 104678.	4.6	18
29	Trend-Resistant and Cost-Efficient Block Designs with Fixed or Random Block Effects. Journal of Quality Technology, 2002, 34, 422-436.	2.5	17
30	Model-robust and model-sensitive designs. Computational Statistics and Data Analysis, 2005, 49, 201-216.	1.2	17
31	Optimal designs for conjoint experiments. Computational Statistics and Data Analysis, 2008, 52, 2369-2387.	1.2	17
32	Order selection in finite mixtures of linear regressions. Statistical Papers, 2014, 55, 871-911.	1.2	17
33	Budget constrained run orders in optimum design. Journal of Statistical Planning and Inference, 2004, 124, 231-249.	0.6	15
34	Effect of choice complexity on design efficiency in conjoint choice experiments. Journal of Statistical Planning and Inference, 2011, 141, 2276-2286.	0.6	15
35	A comparison of different Bayesian design criteria for setting up stated preference studies. Transportation Research Part B: Methodological, 2012, 46, 789-807.	5.9	15
36	Bayesian sequential - optimal model-robust designs. Computational Statistics and Data Analysis, 2004, 47, 655-673.	1.2	14

#	Article	IF	CITATIONS
37	Identifying effects under a split-plot design structure. Journal of Chemometrics, 2005, 19, 5-15.	1.3	14
38	Thinâ€Trading Effects in Beta: Bias <i>v.</i> Estimation Error. Journal of Business Finance and Accounting, 2008, 35, 1196-1219.	2.7	14
39	Model-Robust Design of Conjoint Choice Experiments. Communications in Statistics Part B: Simulation and Computation, 2008, 37, 1603-1621.	1.2	14
40	Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 197-203.	1.5	14
41	A comparison of variational approximations for fast inference in mixed logit models. Computational Statistics, 2017, 32, 93-125.	1.5	14
42	Online Consumers' Attribute Non-Attendance Behavior: Effects of Information Provision. International Journal of Electronic Commerce, 2020, 24, 338-365.	3.0	14
43	What UIP tests on extreme samples reveal about the missing variable. Journal of International Money and Finance, 2005, 24, 1237-1260.	2.5	11
44	Rank-order choice-based conjoint experiments: Efficiency and design. Journal of Statistical Planning and Inference, 2011, 141, 2519-2531.	0.6	11
45	Orthogonalized regressors and spurious precision, with an application to currency exposures. Journal of International Money and Finance, 2015, 51, 245-263.	2.5	11
46	A dynamic programming based heuristic for industrial buying of cardboard. European Journal of Operational Research, 1989, 38, 104-112.	5.7	10
47	Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1188-1212.	1.2	10
48	An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs. SSRN Electronic Journal, 2006, , .	0.4	9
49	Sequential choice designs to estimate the heterogeneity distribution of willingness-to-pay. Quantitative Marketing and Economics, 2011, 9, 429-448.	1.5	8
50	Improving the efficiency of individualized designs for the mixed logit choice model by including covariates. Computational Statistics and Data Analysis, 2012, 56, 2059-2072.	1.2	8
51	An Experimental Diagnostic Procedure to Identify the Source of Defects in Multi-Stage and Multi-Component Production Processes. Journal of Quality Technology, 2016, 48, 213-226.	2.5	8
52	Efficient Bayesian designs under heteroscedasticity. Journal of Statistical Planning and Inference, 2002, 104, 469-483.	0.6	7
53	Is the forward bias economically small? Evidence from European rates. Journal of International Money and Finance, 2008, 27, 1284-1302.	2.5	7
54	Optimal two-level conjoint designs with constant attributes in the profile sets. Journal of Statistical Planning and Inference, 2010, 140, 3035-3046.	0.6	6

#	Article	IF	CITATIONS
55	Recommendations on the use of Bayesian Optimal Designs for Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	6
56	Integrated mixed logit and latent variable models. Marketing Letters, 2013, 24, 245-259.	2.9	5
57	Individually Adapted Sequential Bayesian Designs for Conjoint Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	5
58	Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity. SSRN Electronic Journal, 0, , .	0.4	5
59	Pareto-Optimal Profit-Sharing. ASTIN Bulletin, 1988, 18, 47-55.	1.0	4
60	Bonus-malus system or partial coverage to oppose moral hazard problems?. Insurance: Mathematics and Economics, 1993, 13, 1-5.	1.2	4
61	An adjustment algorithm for optimal run orders in design of experiments. Computational Statistics and Data Analysis, 2002, 40, 559-577.	1.2	4
62	Trend-resistant and cost-efficient cross-over designs for mixed models. Computational Statistics and Data Analysis, 2004, 46, 721-746.	1.2	4
63	Optimal designs for variance function estimation using sample variances. Journal of Statistical Planning and Inference, 2001, 92, 233-252.	0.6	3
64	Semiparametric Exact Optimal Run Orders. Journal of Quality Technology, 2003, 35, 168-183.	2.5	3
65	Estimating the Intercept in an Orthogonally Blocked Experiment when the Block Effects are Random. Communications in Statistics - Theory and Methods, 2005, 33, 873-890.	1.0	3
66	Model-sensitive sequential optimal designs. Computational Statistics and Data Analysis, 2006, 51, 1089-1099.	1.2	3
67	Designing choice experiments by optimizing the complexity level to individual abilities. Quantitative Marketing and Economics, 2015, 13, 1-26.	1.5	3
68	Quantifying the explanatory power of mobility-related attributes in explaining vehicle ownership decisions. Research in Transportation Economics, 2017, 66, 2-11.	4.1	3
69	What Does Society Value About Cancer Medicines? A Discrete Choice Experiment in the Belgian Population. Applied Health Economics and Health Policy, 2019, 17, 895-902.	2.1	3
70	A Comparison of Different Bayesian Design Criteria to Compute Efficient Conjoint Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	3
71	Design Criteria to Develop Choice Experiments to Measure the WTP Accurately. SSRN Electronic Journal, 0, , .	0.4	3
72	How to relax inconsistent constraints in a mixture experiment. Chemometrics and Intelligent Laboratory Systems, 2001, 55, 147-149.	3.5	2

#	Article	IF	CITATIONS
73	The Importance of Attribute Interactions in Conjoint Choice Design and Modeling. SSRN Electronic Journal, 2006, , .	0.4	2
74	How Personal Accessibility and Frequency of Travel Affect Ownership Decisions on Mobility Resources. Sustainability, 2018, 10, 912.	3.2	2
75	Rank-Order Conjoint Experiments: Efficiency and Design. SSRN Electronic Journal, 0, , .	0.4	2
76	The Optimal Design of Blocked Experiments in Industry. , 2005, , 247-279.		1
77	Computerized Adaptive Testing for the Random Weights Linear Logistic Test Model. Applied Psychological Measurement, 2014, 38, 415-431.	1.0	1
78	Optimal Two-Level Conjoint Designs for Large Numbers of Attributes. SSRN Electronic Journal, 0, , .	0.4	1
79	randregret: A command for fitting random regret minimization models using Stata. The Stata Journal, 2021, 21, 626-658.	2.2	1
80	Models and Optimal Designs for Conjoint Choice Experiments Including a No-Choice Option. SSRN Electronic Journal, 0, , .	0.4	1
81	Sequential Choice Designs to Estimate the Distribution of Willingness-to-Pay. SSRN Electronic Journal, 0, , .	0.4	1
82	Innovation in Business and Industrial Statistics. Quality and Reliability Engineering International, 2005, 21, iii-iv.	2.3	0
83	Effect of Choice Complexity on Design Efficiency in Conjoint Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	0
84	Using Appropriate Prior Information to Eliminate Choice Sets with a Dominant Alternative from D-Efficient Designs. SSRN Electronic Journal, 2011, , .	0.4	0
85	Integrated Mixed Logit and Latent Variable Models. SSRN Electronic Journal, 0, , .	0.4	0
86	The Impact of the Soccer Schedule on TV Viewership and Stadium Attendance: Evidence from the Belgian Pro League. SSRN Electronic Journal, 0, , .	0.4	0
87	Joint analysis of preferences and drop out data in discrete choice experiments. Journal of Choice Modelling, 2021, 41, 100308.	2.3	0
88	Comparing Different Sampling Schemes for Approximating the Integrals Involved in the Semi-Bayesian Optimal Design of Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	0
89	Improving the Efficiency of Individualized Designs for the Mixed Logit Choice Model by Including Covariates. SSRN Electronic Journal, 0, , .	0.4	0
90	A Comparison of Two-Stage Segmentation Methods for Choice-Based Conjoint Data: A Simulation Study. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	CITATIONS
91	Computerized Adaptive Testing for the Random Weights Linear Logistic Test Model. SSRN Electronic Journal, 0, , .	0.4	0
92	Fast Algorithms to Generate Individualized Designs for the Mixed Logit Choice Model. SSRN Electronic Journal, 0, , .	0.4	0
93	A Comparison of Variational Approximations for Fast Inference in Mixed Logit Models. SSRN Electronic Journal, 0, , .	0.4	0
94	Estimating the Mixed Logit Model by Maximum Simulated Likelihood and Hierarchical Bayes. SSRN Electronic Journal, 0, , .	0.4	0
95	Modelling consideration heterogeneity in a two-stage conjunctive model. Journal of Mathematical Psychology, 2022, 109, 102687.	1.8	0