Peter Hansell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545786/publications.pdf Version: 2024-02-01

DETED HANSELL

#	Article	IF	CITATIONS
1	Pathophysiology of contrast medium–induced nephropathy. Kidney International, 2005, 68, 14-22.	5.2	446
2	Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia, 2003, 46, 1153-1160.	6.3	284
3	Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 123-137.	1.9	216
4	Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 328-338.	6.1	166
5	Renal failure in 57925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media. Kidney International, 2006, 70, 1811-1817.	5.2	139
6	Kidney Hypoxia, Attributable to Increased Oxygen Consumption, Induces Nephropathy Independently of Hyperglycemia and Oxidative Stress. Hypertension, 2013, 62, 914-919.	2.7	137
7	Diabetes, Oxidative Stress, Nitric Oxide and Mitochondria Function. Current Diabetes Reviews, 2009, 5, 120-144.	1.3	109
8	Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 935-940.	1.0	95
9	Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia, 2012, 55, 1535-1543.	6.3	86
10	Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats. Diabetologia, 2004, 47, 1223-1231.	6.3	80
11	The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney International, 1991, 39, 253-258.	5.2	78
12	Effects of Intravenous Contrast Media on Cortical and Medullary Blood Flow in the Rat Kidney. Investigative Radiology, 1988, 23, 753-761.	6.2	75
13	Differentiating between effects of streptozotocinper seand subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes/Metabolism Research and Reviews, 2004, 20, 452-459.	4.0	75
14	Hyaluronan content in the kidney in different states of body hydration. Kidney International, 2000, 58, 2061-2068.	5.2	74
15	Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats: Effects on Renal Oxygenation and Microcirculation. Diabetes, 2005, 54, 3282-3287.	0.6	74
16	Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. American Journal of Physiology - Renal Physiology, 2010, 299, F380-F386.	2.7	68
17	Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. American Journal of Physiology - Renal Physiology, 2008, 294, F30-F37.	2.7	59
18	Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1235-R1249.	1.8	55

#	Article	IF	CITATIONS
19	Tubular reabsorption and diabetesâ€induced glomerular hyperfiltration. Acta Physiologica, 2010, 200, 3-10.	3.8	52
20	Renal hyaluronan accumulation and hyaluronan synthase expression after ischaemia-reperfusion injury in the rat. Nephrology Dialysis Transplantation, 2004, 19, 823-830.	0.7	51
21	Tachyarrhythmias and triggering factors for atrial fibrillation after coronary artery bypass operations. Annals of Thoracic Surgery, 2000, 69, 1064-1069.	1.3	48
22	Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and beta2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels Journal of Clinical Investigation, 1997, 99, 2246-2253.	8.2	46
23	Renal Effects of CO2 and Iodinated Contrast Media in Patients Undergoing Renovascular Intervention: A Prospective, Randomized Study. Journal of Vascular and Interventional Radiology, 2005, 16, 57-65.	0.5	45
24	Prolactin, a natriuretic hormone, interacting with the renal dopamine system. Kidney International, 2005, 68, 1700-1707.	5.2	43
25	Nitric oxide and kidney oxygenation. Current Opinion in Nephrology and Hypertension, 2009, 18, 68-73.	2.0	33
26	The dopamine receptor antagonist haloperidol blocks natriuretic but not hypotensive effects of the atrial natriuretic factor. Acta Physiologica Scandinavica, 1987, 130, 401-407.	2.2	30
27	Endothelin-1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1616-E1623.	3.5	30
28	The roles of NADPHâ€oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney. Diabetes/Metabolism Research and Reviews, 2010, 26, 349-356.	4.0	30
29	Prenatal exposure to interleukinâ€6 results in hypertension and alterations in the renin–angiotensin system of the rat. Journal of Physiology, 2006, 575, 855-867.	2.9	29
30	Hypoperfusion in the Renal outer Medulla after Injection of Contrast Media in Rats. Acta Radiologica, 1999, 40, 521-527.	1.1	28
31	Vasopressin and hypercalciuria in enuresis: a reappraisal. BJU International, 2002, 90, 725-729.	2.5	28
32	Atriopeptins and renal cortical and papillary blood flow. Acta Physiologica Scandinavica, 1986, 127, 349-357.	2.2	27
33	Renomedullary interstitial cells in culture; the osmolality and oxygen tension influence the extracellular amounts of hyaluronan and cellular expression of CD44. Matrix Biology, 2001, 20, 129-136.	3.6	27
34	NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1443-R1449.	1.8	27
35	Reduced Oxygenation In Diabetic Rat Kidneys Measured By T2* Weighted Magnetic Resonance Micro-Imaging. Advances in Experimental Medicine and Biology, 2009, 645, 199-204.	1.6	27
36	Renomedullary and intestinal hyaluronan content during body water excess: a study in rats and gerbils. Journal of Physiology, 2002, 542, 315-322.	2.9	25

#	Article	IF	CITATIONS
37	Adenosine A ₂ a receptor stimulation prevents proteinuria in diabetic rats by promoting an anti-inflammatory phenotype without affecting oxidative stress. Acta Physiologica, 2015, 214, 311-318.	3.8	25
38	Lung density for assessment of hydration status in hemodialysis patients using the computed tomographic densitometry technique. Kidney International, 1997, 52, 1635-1644.	5.2	24
39	Red-Cell Trapping in the Rat Renal Microcirculation Induced by Low-Osmolar Contrast Media and Mannitol. Investigative Radiology, 1993, 28, 1033-1038.	6.2	22
40	CNSâ€induced natriuresis is not mediated by the atrial natriuretic factor. Acta Physiologica Scandinavica, 1987, 129, 221-227.	2.2	21
41	Hormonal regulation of renomedullary hyaluronan. Acta Physiologica, 2008, 193, 191-198.	3.8	21
42	Hyaluronan synthases and hyaluronidases in the kidney during changes in hydration status. Matrix Biology, 2009, 28, 390-395.	3.6	21
43	Reduced adenosine A2a receptor–mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration. Kidney International, 2015, 87, 109-115.	5.2	21
44	Atrial natriuretic factor, urinary catechol compounds and electrolyte excretion in rats during normal hydration and isotonic volume expansion. Influence of dopamine receptor blockade Acta Physiologica Scandinavica, 1988, 134, 421-428.	2.2	20
45	Identification and Distribution of Uncoupling Protein Isoforms in the Normal and Diabetic Rat Kidney. Advances in Experimental Medicine and Biology, 2009, 645, 205-212.	1.6	20
46	Renomedullary interstitial cells regulate hyaluronan turnover depending on growth media osmolality suggesting a role in renal water handling. Acta Physiologica Scandinavica, 1999, 165, 115-116.	2.2	19
47	Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat. European Radiology, 2004, 14, 1297-302.	4.5	19
48	Lymphatic Vessels in Pancreatic Islets Implanted Under the Renal Capsule of Rats. American Journal of Transplantation, 2006, 6, 680-686.	4.7	19
49	Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. American Journal of Physiology - Renal Physiology, 2010, 298, F416-F420.	2.7	19
50	l -Citrulline, But Not l -Arginine, Prevents Diabetes Mellitus–Induced Glomerular Hyperfiltration and Proteinuria in Rat. Hypertension, 2014, 64, 323-329.	2.7	19
51	Deletion of Uncoupling Proteinâ€2 reduces renal mitochondrial leak respiration, intrarenal hypoxia and proteinuria in a mouse model of type 1 diabetes. Acta Physiologica, 2018, 223, e13058.	3.8	19
52	Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. American Journal of Physiology - Renal Physiology, 2019, 316, F693-F702.	2.7	19
53	Different renal effects of two inhibitors of catecholâ€Oâ€methylation in the rat: Entacapone and CGP 28014. Acta Physiologica Scandinavica, 1998, 162, 489-494.	2.2	18
54	Increased Kidney Metabolism as a Pathway to Kidney Tissue Hypoxia and Damage: Effects of Triiodothyronine and Dinitrophenol in Normoglycemic Rats. Advances in Experimental Medicine and Biology, 2013, 789, 9-14.	1.6	18

#	Article	IF	CITATIONS
55	Evaluation of Methods for Estimating Renal Medullary Blood Flow. Kidney and Blood Pressure Research, 1992, 15, 217-230.	2.0	17
56	Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R39-R47.	1.8	16
57	Effects of atrial natriuretic peptide (ANP) during converting enzyme inhibition. Acta Physiologica Scandinavica, 1987, 130, 393-399.	2.2	15
58	Fluid balance in patients with chronic renal failure assessed with Nâ€ŧerminal proatrial natriuretic peptide, atrial natriuretic peptide and ultrasonography. Acta Physiologica Scandinavica, 2001, 171, 117-122.	2.2	15
59	Influence of iothalamate on renal medullary perfusion and oxygenation in the rat. Acta Radiologica, 2005, 46, 823-829.	1.1	15
60	Determination of the charge of the plasma proteins and consequent Donnan equilibrium across the capillary barriers in the rat microvasculature. Acta Physiologica, 2008, 194, 335-339.	3.8	15
61	C-Peptide Normalizes Glomerular Filtration Rate in Hyperfiltrating Conscious Diabetic Rats. Advances in Experimental Medicine and Biology, 2009, 645, 219-225.	1.6	15
62	Differences in susceptibility to develop parameters of diabetic nephropathy in four mouse strains with type 1 diabetes. American Journal of Physiology - Renal Physiology, 2014, 306, F1171-F1178.	2.7	15
63	Uncoupling Protein-2 in Diabetic Kidneys. Advances in Experimental Medicine and Biology, 2008, 614, 37-43.	1.6	15
64	Redistribution of glomerular filtration and renal plasma flow in CNSâ€induced natriuresis. Acta Physiologica Scandinavica, 1986, 127, 491-497.	2.2	14
65	Transient Clomerular Hyperfiltration in the Streptozotocin- Diabetic Wistar Furth Rat. Upsala Journal of Medical Sciences, 2001, 106, 175-182.	0.9	14
66	Influence of acridine tracer dyes on neutrophil function. Journal of Leukocyte Biology, 1994, 56, 464-468.	3.3	13
67	Reduced natriuretic response to acute sodium loading in COMT gene deleted mice. BMC Physiology, 2002, 2, 14.	3.6	13
68	Intravoxel Incoherent Motion MR Imaging of the Kidney: Pilot Study. Advances in Experimental Medicine and Biology, 2013, 765, 55-58.	1.6	13
69	Natriuresis obtained by stimulation of the cerebroventricular system with sodium ions indicates a bloodâ€borne natriuretic factor. Acta Physiologica Scandinavica, 1986, 127, 269-271.	2.2	12
70	Regulation of Dopamine-Induced Natriuresisby the Dopamine-Metabolizing Enzyme Catechol-O-Methyltransferase. Nephron Experimental Nephrology, 1999, 7, 314-322.	2.2	12
71	The role of dopamine-metabolizing enzymes in the regulation of renal sodium excretion in the rat. Pflugers Archiv European Journal of Physiology, 2001, 442, 505-510.	2.8	12
72	Circadian variation in renal blood flow and kidney function in healthy volunteers monitored with noninvasive magnetic resonance imaging. American Journal of Physiology - Renal Physiology, 2020, 319, F966-F978.	2.7	12

#	Article	IF	CITATIONS
73	Iodinated Contrast Media Decrease Renomedullary Blood Flow. Advances in Experimental Medicine and Biology, 2009, 645, 213-218.	1.6	12
74	Altered Response in Renal Blood Flow and Oxygen Tension to Contrast Media in Diabetic Rats. Acta Radiologica, 2003, 44, 347-353.	1.1	11
75	CNSâ€induced natriuresis during dopamine receptor blockade. Further support for the existence of, at least, two separate natriuretic hormonal systems. Acta Physiologica Scandinavica, 1988, 133, 373-380.	2.2	10
76	Renal dopamine and noradrenaline excretion during CNS-induced natriuresis in spontaneously hypertensive rats: influence of dietary sodium. Acta Physiologica Scandinavica, 2000, 168, 257-266.	2.2	10
77	Adenosine A2 Receptor-Mediated Regulation of Renal Hemodynamics and Glomerular Filtration Rate Is Abolished in Diabetes. Advances in Experimental Medicine and Biology, 2013, 765, 225-230.	1.6	10
78	Effects of the Contrast Medium Iopromide on Renal Hemodynamics and Oxygen Tension in the Diabetic Rat Kidney. Advances in Experimental Medicine and Biology, 2003, 530, 653-659.	1.6	10
79	Renal cortical accumulation of hyaluronan in adult rats exposed neonatally to angiotensin-converting enzyme inhibition. Acta Physiologica Scandinavica, 2001, 173, 343-350.	2.2	9
80	Differences in binding of platelet factor 4 to vascular endothelium <i>in vivo</i> and endothelial cells <i>in vitro</i> . Acta Physiologica Scandinavica, 1995, 154, 449-459.	2.2	8
81	The Effects of Carbon Dioxide versus loxaglate in the Rat Kidney. Journal of Vascular and Interventional Radiology, 2005, 16, 269-274.	0.5	8
82	Angiotensin converting enzyme inhibition blocks interstitial hyaluronan dissipation in the neonatal rat kidney via hyaluronan synthase 2 and hyaluronidase 1. Matrix Biology, 2011, 30, 62-69.	3.6	8
83	Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin. International Journal of Molecular Sciences, 2017, 18, 2701.	4.1	8
84	Influence of iotrolan on renal cortical and outer medullary blood flow in the rat. Academic Radiology, 1998, 5, S123-S126.	2.5	7
85	Changing dopaminergic activity through different pathways: consequences for renal sodium excretion, regional blood flow and oxygen tension in the rat. Acta Physiologica Scandinavica, 2001, 172, 219-226.	2.2	7
86	Inhibition of hyaluronan synthesis in rats reduces renal ability to excrete fluid and electrolytes during acute hydration. Upsala Journal of Medical Sciences, 2013, 118, 217-221.	0.9	7
87	Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan. Upsala Journal of Medical Sciences, 2015, 120, 233-240.	0.9	7
88	Inhibition of mammalian target of rapamycin decreases intrarenal oxygen availability and alters glomerular permeability. American Journal of Physiology - Renal Physiology, 2018, 314, F864-F872.	2.7	7
89	The calcium entry blocker verapamil increases red cell flux in the vasa recta of the exposed renal papilla. Acta Physiologica Scandinavica, 1988, 134, 9-15.	2.2	6
90	Sodium and dopamine excretion in prehypertensive Dahl rats during severe hypervolaemia. Acta Physiologica Scandinavica, 1995, 155, 165-171.	2.2	6

#	Article	IF	CITATIONS
91	Oxidative Stress and Hypoxia in the Pathogenesis of Diabetic Nephropathy. , 2011, , 559-586.		6
92	Effect of papillary exposure on intrarenal distribution of glomerular filtration rate and of plasma flow. Acta Physiologica Scandinavica, 1990, 138, 61-66.	2.2	5
93	The Adrenal Glands as Suppliers of Plasma <i>L</i> ·Dopa and Sources of Urinary Dopamine. Kidney and Blood Pressure Research, 1996, 19, 109-114.	2.0	5
94	Hypoxia in the Diabetic Kidney Is Independent of Advanced Glycation End-Products. Advances in Experimental Medicine and Biology, 2013, 765, 185-193.	1.6	5
95	Thyroid hormone increases oxygen metabolism causing intrarenal tissue hypoxia; a pathway to kidney disease. PLoS ONE, 2022, 17, e0264524.	2.5	5
96	Renal effects of Atriopeptin II and dopamine receptor blockade in acutely volumeâ€expanded rats. Acta Physiologica Scandinavica, 1988, 133, 35-40.	2.2	4
97	CNS-induced natriuresis, neurohypophyseal peptides and renal dopamine and noradrenaline excretion in prehypertensive salt-sensitive Dahl rats. Experimental Physiology, 2005, 90, 847-853.	2.0	4
98	High Sensitivity Method to Estimate Distribution of Hyaluronan Molecular Sizes in Small Biological Samples Using Gas-Phase Electrophoretic Mobility Molecular Analysis. International Journal of Cell Biology, 2015, 2015, 1-5.	2.5	4
99	A role for the extracellular matrix component hyaluronan in kidney dysfunction during <scp>ACE</scp> â€inhibitor fetopathy. Acta Physiologica, 2015, 213, 795-804.	3.8	4
100	Cellular transport of <scp>l</scp> -arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity. American Journal of Physiology - Renal Physiology, 2017, 312, F278-F283.	2.7	4
101	Intrarenal oxygenation determines kidney function during the recovery from an ischemic insult. American Journal of Physiology - Renal Physiology, 2020, 319, F1067-F1072.	2.7	4
102	Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism. , 2006, 578, 161-166.		4
103	Plasma Atrial Natriuretic Factor (αanf) During Hemodialysis (HD) and Hemofiltration (HF). Scandinavian Journal of Urology and Nephrology, 1991, 25, 65-69.	1.4	3
104	Dopamine receptor blockade and synthesis inhibition during exaggerated natriuresis in spontaneously hypertensive rats. Acta Physiologica Scandinavica, 1992, 144, 269-276.	2.2	3
105	Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide. Upsala Journal of Medical Sciences, 2016, 121, 12-16.	0.9	3
106	Role of carbonic anhydrase in acute recovery following renal ischemia reperfusion injury. PLoS ONE, 2019, 14, e0220185.	2.5	3
107	Renomedullary Interstitial Cell Endothelin A Receptors Regulate BP and Renal Function. Journal of the American Society of Nephrology: JASN, 2020, 31, 1555-1568.	6.1	3
108	Influence of Captopril on Red Cell Velocity in the Vasa Recta of the Renal Medulla. Upsala Journal of Medical Sciences, 1993, 98, 149-158.	0.9	2

#	Article	IF	CITATIONS
109	Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Coronary Angiography. Journal of the American College of Cardiology, 2007, 49, 1668-1669.	2.8	2
110	A method for in situ measurement of ionic concentration in picoliter samples of renal tubular fluid. Pflugers Archiv European Journal of Physiology, 1984, 401, 430-432.	2.8	1
111	Tubuglomerular feedback control in long-looped nephrons. Upsala Journal of Medical Sciences, 1992, 97, 107-114.	0.9	1
112	Hemodynamic effect of iopromide in pancreas-duodenum transplanted rats. Acta Radiologica, 2007, 48, 1125-1130.	1.1	1
113	Response to â€~lodixanol vs ioxaglate for preventing contrast nephropathy: who is the winner?'. Kidney International, 2007, 71, 828-829.	5.2	1
114	<scp>NADPH</scp> â€oxidaseâ€driven oxidative stress during experimental diabetes offsets <scp>NO</scp> â€mediated regulation of renal medullary sodium transport. A potential treatment modality during type 1 diabetes?. Acta Physiologica, 2013, 209, 94-94.	3.8	1
115	Radiological contrast media and pancreatic blood perfusion in anesthetized rats. Acta Radiologica, 2007, 48, 1120-1124.	1.1	0
116	Erik Persson (1941â€⊋020) – a Remembrance. Acta Physiologica, 2020, 230, 1-2.	3.8	0
117	Hans R Ulfendahl (1927â€2021)—Obituary. Acta Physiologica, 2021, 232, e13653.	3.8	0
118	Diabetesâ€induced reduction in renal medullary nitric oxide (NO) and oxygen tension (pO 2) due to increased hepatic arginine metabolism and oxidative stress. FASEB Journal, 2007, 21, A841.	0.5	0
119	Endothelinâ€1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. FASEB Journal, 2007, 21, A483.	0.5	0
120	NADPHâ€oxidase and nNOS are responsible for the diabetesâ€induced increase in transportâ€dependent renal oxygen consumption. FASEB Journal, 2007, 21, A453.	0.5	0
121	Diabetesâ€induced upâ€regulation of mitochondrial uncoupling proteinâ€2 (UCPâ€2) results in increased ouabainâ€insensitive oxygen consumption (Q _{O2}) by renal proximal tubular (PT) cells. FASEB Journal, 2007, 21, A453.	0.5	0
122	Increased mitochondrial uncoupling results in renal tissue hypoxia and proteinuria. FASEB Journal, 2011, 25, 664.4.	0.5	0
123	HIF activation fails to restore renal oxygenation in already established diabetic nephropathy. FASEB Journal, 2011, 25, 664.8.	0.5	0
124	NADPH oxidase inhibition reduces tubular Na+ transport and improves kidney oxygenation in diabetic rats. FASEB Journal, 2011, 25, 664.5.	0.5	0
125	Renomedullary interstitial hyaluronan is important for hydrationâ€induced diuresis. FASEB Journal, 2012, 26, 1100.1.	0.5	0
126	Nonâ€invasive Multiparametric MRI of the Kidneys. FASEB Journal, 2018, 32, 851.8.	0.5	0

#	Article	IF	CITATIONS
127	Normobaric hyperoxia ameliorates renal ischemia reperfusion injury in rats. FASEB Journal, 2019, 33, 566.8.	0.5	0