Christoph Siebenmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545559/publications.pdf

Version: 2024-02-01

55 1,861 papers citations

25 h-index 42 g-index

56 all docs

56 docs citations 56 times ranked 1943 citing authors

#	Article	IF	Citations
1	"Live high–train low―using normobaric hypoxia: a double-blinded, placebo-controlled study. Journal of Applied Physiology, 2012, 112, 106-117.	1.2	133
2	Cutaneous Vasoconstriction Affects Near-infrared Spectroscopy Determined Cerebral Oxygen Saturation during Administration of Norepinephrine. Anesthesiology, 2012, 117, 263-270.	1.3	132
3	Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. Journal of Applied Physiology, 2011, 111, 1422-1430.	1.2	131
4	Effect of Short-Term Acclimatization to High Altitude on Sleep and Nocturnal Breathing. Sleep, 2012, 35, 419-423.	0.6	122
5	Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude. Journal of Applied Physiology, 2015, 119, 1194-1201.	1.2	89
6	Twentyâ€eight days at 3454â€m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB Journal, 2012, 26, 5192-5200.	0.2	76
7	Cardiac output during exercise: A comparison of four methods. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e20-7.	1.3	74
8	Regulation of blood volume in lowlanders exposed to high altitude. Journal of Applied Physiology, 2017, 123, 957-966.	1.2	74
9	Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O ₂ diffusing capacity. Journal of Physiology, 2015, 593, 4649-4664.	1.3	70
10	CORP: The assessment of total hemoglobin mass by carbon monoxide rebreathing. Journal of Applied Physiology, 2017, 123, 645-654.	1.2	67
11	Red Cell Volume Expansion at Altitude. Medicine and Science in Sports and Exercise, 2013, 45, 1767-1772.	0.2	61
12	Regulation of cardiac output in hypoxia. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 53-59.	1.3	61
13	Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 136-150.	2.4	55
14	The role of haemoglobin mass on VO2max following normobaric †live high†train low†in endurance-trained athletes. British Journal of Sports Medicine, 2012, 46, 822-827.	3.1	36
15	Extraâ€cerebral oxygenation influence on nearâ€infraredâ€spectroscopyâ€determined frontal lobe oxygenation in healthy volunteers: a comparison between <scp>INVOS</scp> â€4100 and <scp>NIRO</scp> â€200 <scp>NX</scp> . Clinical Physiology and Functional Imaging, 2015, 35, 177-184.	0.5	35
16	Dexamethasone Improves Maximal Exercise Capacity of Individuals Susceptible to High Altitude Pulmonary Edema at 4559 m. High Altitude Medicine and Biology, 2011, 12, 169-177.	0.5	32
17	Twentyâ€eightÂdays of exposure to 3454Âm increases mitochondrial volume density in human skeletal muscle. Journal of Physiology, 2016, 594, 1151-1166.	1.3	32
18	Hypobaric live highâ€train low does not improve aerobic performance more than live lowâ€train low in crossâ€country skiers. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1636-1652.	1.3	32

#	Article	IF	CITATIONS
19	High Altitude Sleep Disturbances Monitored by Actigraphy and Polysomnography. High Altitude Medicine and Biology, 2011, 12, 229-236.	0.5	31
20	Hematological Adaptations to Prolonged Heat Acclimation in Endurance-Trained Males. Frontiers in Physiology, 2019, 10, 1379.	1.3	31
21	Sleep and Breathing in High Altitude Pulmonary Edema Susceptible Subjects at 4,559 Meters. Sleep, 2012, 35, 1413-1421.	0.6	30
22	Hypovolemia explains the reduced stroke volume at altitude. Physiological Reports, 2013, 1, e00094.	0.7	30
23	Effect of endurance versus resistance training on local muscle and systemic inflammation and oxidative stress in <scp>COPD</scp> . Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2339-2348.	1.3	30
24	Hypocapnia during hypoxic exercise and its impact on cerebral oxygenation, ventilation and maximal whole body O2 uptake. Respiratory Physiology and Neurobiology, 2013, 185, 461-467.	0.7	28
25	Kidney-synthesized erythropoietin is the main source for the hypoxia-induced increase in plasma erythropoietin in adult humans. European Journal of Applied Physiology, 2014, 114, 1107-1111.	1.2	28
26	Hypoxic Training Is Not Beneficial in Elite Athletes. Medicine and Science in Sports and Exercise, 2020, 52, 519-522.	0.2	26
27	Four weeks of normobaric "live high-train low―do not alter muscular or systemic capacity for maintaining pH and K+ homeostasis during intense exercise. Journal of Applied Physiology, 2012, 112, 2027-2036.	1.2	24
28	Regulation of plasma volume in male lowlanders during 4 days of exposure to hypobaric hypoxia equivalent to 3500Âm altitude. Journal of Physiology, 2021, 599, 1083-1096.	1.3	24
29	Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. Journal of Applied Physiology, 2019, 126, 124-131.	1.2	23
30	A brief pre-exercise nap may alleviate physical performance impairments induced by short-term sustained operations with partial sleep deprivation – A field-based study. Chronobiology International, 2018, 35, 1464-1470.	0.9	22
31	The carbon monoxide re-breathing method can underestimate Hbmass due to incomplete blood mixing. European Journal of Applied Physiology, 2013, 113, 2425-2430.	1.2	21
32	Hypoxia increases exercise heart rate despite combined inhibition of \hat{l}^2 -adrenergic and muscarinic receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1540-H1546.	1.5	21
33	Parasympathetic withdrawal increases heart rate after 2Âweeks at 3454Âm altitude. Journal of Physiology, 2017, 595, 1619-1626.	1.3	21
34	Effect of Increased Blood Flow on Pulmonary Circulation Before and During High Altitude Acclimatization. High Altitude Medicine and Biology, 2016, 17, 305-314.	0.5	19
35	Detection of blood volumes and haemoglobin mass by means of CO re-breathing and indocyanine green and sodium fluorescein injections. Scandinavian Journal of Clinical and Laboratory Investigation, 2017, 77, 164-174.	0.6	19
36	Prolonged Heat Acclimation and Aerobic Performance in Endurance Trained Athletes. Frontiers in Physiology, 2019, 10, 1372.	1.3	19

#	Article	IF	CITATIONS
37	Cerebrovascular Reactivity is Increased with Acclimatization to 3,454 M Altitude. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1323-1330.	2.4	17
38	Does cerebral hypoxia facilitate central fatigue?. Experimental Physiology, 2016, 101, 1173-1177.	0.9	14
39	Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H980-H994.	1.5	14
40	The interaction between metformin and physical activity on postprandial glucose and glucose kinetics: a randomised, clinical trial. Diabetologia, 2021, 64, 397-409.	2.9	14
41	Skeletal muscle adaptations to exercise are not influenced by metformin treatment in humans: secondary analyses of 2 randomized, clinical trials. Applied Physiology, Nutrition and Metabolism, 2022, 47, 309-320.	0.9	8
42	Cutaneous exposure to hypoxia does not affect skin perfusion in humans. Acta Physiologica, 2017, 220, 361-369.	1.8	7
43	Cerebral lactate uptake during exercise is driven by the increased arterial lactate concentration. Journal of Applied Physiology, 2021, 131, 1824-1830.	1.2	7
44	Plasma volume contraction reduces atrial natriuretic peptide after four days of hypobaric hypoxia exposure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R526-R531.	0.9	4
45	Blood Oxygen Carrying Capacity Determines Cardiorespiratory Fitness in Middle-Age and Older Women and Men. Medicine and Science in Sports and Exercise, 2021, 53, 2274-2282.	0.2	4
46	Hemoglobin Mass Expansion during 13 d of Altitude Training. Medicine and Science in Sports and Exercise, 2016, 48, 1425.	0.2	3
47	Carbon monoxide reduces near-infrared spectroscopy determined †total†hemoglobin: a human volunteer study. Scandinavian Journal of Clinical and Laboratory Investigation, 2017, 77, 259-262.	0.6	3
48	The middle cerebral artery blood velocity response to acute normobaric hypoxia occurs independently of changes in ventilation in humans. Experimental Physiology, 2021, 106, 861-867.	0.9	3
49	Cardiac performance is influenced by rotational changes of position in the transversal plane, both in the horizontal and in the 60ÌŠ headâ€up postures. Clinical Physiology and Functional Imaging, 2018, 38, 1021-1028.	0.5	2
50	In Reply:. Anesthesiology, 2013, 118, 982-982.	1.3	1
51	Marked improvements in cardiac function in postmenopausal women exposed to blood withdrawal plus endurance training. Journal of Sports Sciences, 2022, 40, 1609-1617.	1.0	1
52	Reply to Schmitt and Millet. Journal of Applied Physiology, 2012, 112, 528-528.	1.2	0
53	Reply to Garvican, Saunders, Pyne, Martin, Robertson, and Gore. Journal of Applied Physiology, 2012, 112, 1799-1799.	1.2	0
54	Measuring Uptake and Elimination of Nitrogen in Humans at Different Ambient Pressures. Aerospace Medicine and Human Performance, 2016, 87, 1045-1050.	0.2	0

#	Article	IF	CITATIONS
55	Response to Millet and Brocherie. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2244-2245.	1.3	0