
Lifang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring electrospun nanofibrous materials for oil/water emulsion separation. Journal of the Textile Institute, 2022, 113, 2285-2298.	1.0	4
2	Structure and rheological studies of phosphorylated cellulose nanofibrils suspensions. Industrial Crops and Products, 2022, 178, 114581.	2.5	14
3	Highly flexible, freestanding supercapacitor electrodes based on hollow hierarchical porous carbon nanotubes. Chemical Engineering Journal, 2022, 434, 134662.	6.6	44
4	Recyclable, superhydrophobic and effective Ag/TiO2@PDMS coated cotton fabric with visible-light photocatalyst for efficient water purification. Cellulose, 2022, 29, 3529-3544.	2.4	13
5	Recent Progress in the Application of Cellulose in Electromagnetic Interference Shielding Materials. Macromolecular Materials and Engineering, 2022, 307, .	1.7	16
6	Extraction of cellulose nanofibrils from Ficus natalensis barkcloth and utilization in preparation of antimicrobial bio-nanocomposite films for possible food packaging applications. Journal of Industrial Textiles, 2022, 51, 3980S-3997S.	1.1	1
7	Nanocellulose-based aerogels with devisable structure and tunable properties via ice-template induced self-assembly. Industrial Crops and Products, 2022, 179, 114701.	2.5	14
8	Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohydrate Polymers, 2022, 286, 119306.	5.1	34
9	Superior stable, hydrophobic and multifunctional nanocellulose hybrid aerogel via rapid UV induced in-situ polymerization. Carbohydrate Polymers, 2022, 288, 119370.	5.1	18
10	An Eco-friendly Route to Prepare Cellulose Based Multifunctional Lyocell Fabrics Using Zinc Oxide and Cellulose Nanofibrils Network. Fibers and Polymers, 2022, 23, 1275-1283.	1.1	1
11	Dual bio-inspired strong and humidity-responsive composite cellulose nanofibril papers. Journal of Materials Science, 2022, 57, 8727-8738.	1.7	1
12	Structure and properties of high quality natural cellulose nano fibrils from a novel material Ficus natalensis barkcloth. Journal of Industrial Textiles, 2021, 51, 664-680.	1.1	17
13	Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Materials Chemistry Frontiers, 2021, 5, 97-128.	3.2	55
14	Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. Journal of Materials Chemistry A, 2021, 9, 15310-15320.	5.2	30
15	Efficient recovery of the dyed cotton–polyester fabric: cellulose nanocrystal extraction and its application in composite films. Cellulose, 2021, 28, 3235-3248.	2.4	18
16	Phosphorylated cellulose nanofibrils: structure-morphology-rheology relationships. Cellulose, 2021, 28, 4105-4117.	2.4	19
17	Functionalization of cotton fabric with ZnO nanoparticles and cellulose nanofibrils for ultraviolet protection. Textile Reseach Journal, 2021, 91, 2303-2314.	1.1	7
18	Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate Polymers, 2021, 264, 118033.	5.1	93

LIFANG LIU

#	Article	IF	CITATIONS
19	Charged membranes based on spider silk-inspired nanofibers for comprehensive and continuous purification of wastewater. Nanotechnology, 2021, 32, 495704.	1.3	13
20	Crosslinking polydopamine/cellulose nanofibril composite aerogels by metal coordination bonds for significantly improved thermal stability, flame resistance, and thermal insulation properties. Cellulose, 2021, 28, 10987-10997.	2.4	15
21	Lightweight Cellulose Nanofibril/Reduced Graphene Oxide Aerogels with Unidirectional Pores for Efficient Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2021, 8, 2101437.	1.9	25
22	Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. ACS Nano, 2020, 14, 1045-1054.	7.3	131
23	High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks. Composites Communications, 2020, 22, 100493.	3.3	40
24	Effects of Phosphorylation Duration on the Jute Extracted Cellulose Nanofibrils Using Ultraâ€sonication. ChemistrySelect, 2020, 5, 12750-12758.	0.7	6
25	<i>Setaria Viridis</i> -Inspired Electrode with Polyaniline Decorated on Porous Heteroatom-Doped Carbon Nanofibers for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 43634-43645.	4.0	47
26	High-performance filters from biomimetic wet-adhesive nanoarchitectured networks. Journal of Materials Chemistry A, 2020, 8, 18955-18962.	5.2	46
27	Cellulose nanofibril (CNF) based aerogels prepared by a facile process and the investigation of thermal insulation performance. Cellulose, 2020, 27, 6217-6233.	2.4	56
28	Multifunctional, Waterproof, and Breathable Nanofibrous Textiles Based on Fluorine-Free, All-Water-Based Coatings. ACS Applied Materials & Interfaces, 2020, 12, 15911-15918.	4.0	57
29	Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydrate Polymers, 2020, 247, 116701.	5.1	40
30	Highâ€Performance PM _{0.3} Air Filters Using Selfâ€Polarized Electret Nanofiber/Nets. Advanced Functional Materials, 2020, 30, 1909554.	7.8	97
31	Electrospun Nanofibrous Membranes: An Effective Arsenal for the Purification of Emulsified Oily Wastewater. Advanced Functional Materials, 2020, 30, 2002192.	7.8	116
32	The influence of high temperature treatment on morphology and performance of superfine glass fiber felts. Textile Reseach Journal, 2020, 90, 2292-2303.	1.1	3
33	Electrospun flexible nanofibrous membranes for oil/water separation. Journal of Materials Chemistry A, 2019, 7, 20075-20102.	5.2	177
34	A Fluffy Dualâ€Network Structured Nanofiber/Net Filter Enables Highâ€Efficiency Air Filtration. Advanced Functional Materials, 2019, 29, 1904108.	7.8	163
35	Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability. Composites Communications, 2019, 15, 40-45.	3.3	38
36	Taro leaf-inspired and superwettable nanonet-covered nanofibrous membranes for high-efficiency oil purification. Nanoscale Horizons, 2019, 4, 1174-1184.	4.1	61

LIFANG LIU

#	Article	IF	CITATIONS
37	Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horizons, 2019, 4, 867-873.	4.1	41
38	Characteristics of cotton fabric modified with chitosan (CS)/cellulose nanocrystal (CNC) nanocomposites. Materials Letters, 2018, 211, 300-303.	1.3	21
39	Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Applied Materials & Interfaces, 2018, 10, 30887-30894.	4.0	63
40	Nanofiberâ€Based Hydrogels: Controllable Synthesis and Multifunctional Applications. Macromolecular Rapid Communications, 2018, 39, e1800058.	2.0	46
41	Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Industrial Crops and Products, 2017, 109, 241-247.	2.5	118
42	Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue. Carbohydrate Polymers, 2017, 175, 464-472.	5.1	52
43	Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS Applied Materials & Interfaces, 2017, 9, 29302-29310.	4.0	101
44	Scalable Fabrication of Electrospun Nanofibrous Membranes Functionalized with Citric Acid for High-Performance Protein Adsorption. ACS Applied Materials & Interfaces, 2016, 8, 11819-11829.	4.0	106
45	Clematichinenoside protects blood brain barrier against ischemic stroke superimposed on systemic inflammatory challenges through up-regulating A20. Brain, Behavior, and Immunity, 2016, 51, 56-69.	2.0	42
46	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 2015, 5, 91813-91820.	1.7	38
47	Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent llºB kinase/NF-lºB pathway. Free Radical Biology and Medicine, 2015, 78, 190-201.	1.3	67
48	An approach for testing and predicting longitudinal tensile modulus of 3D braided composites. Journal of Reinforced Plastics and Composites, 2014, 33, 775-784.	1.6	12
49	Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. Journal of Materials Chemistry A, 2013, 1, 14071.	5.2	165
50	Enzymatic treatment of mechanochemical modified natural bamboo fibers. Fibers and Polymers, 2012, 13, 600-605.	1.1	33
51	Modification of natural bamboo fibers for textile applications. Fibers and Polymers, 2011, 12, 95-103.	1.1	35
52	Evaluation of the availability of easy cationic dyeable copolyester fibers as electrostatic flocking piles. Journal of Applied Polymer Science, 2011, 120, 195-201.	1.3	13
53	Comparison of the physical properties of heat-treated and hydrophobic modified glass fiber felt. Journal of Industrial Textiles, 0, , 152808372098847.	1.1	2