## Kumar Selvarajoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545372/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identifying toggle genes from transcriptome-wide scatter: A new perspective for biological regulation. Genomics, 2022, 114, 215-228.                                     | 1.3 | 6         |
| 2  | The transformation of our food system using cellular agriculture: What lies ahead and who will lead it?. Trends in Food Science and Technology, 2022, 127, 368-376.      | 7.8 | 12        |
| 3  | The need for integrated systems biology approaches for biotechnological applications. Biotechnology<br>Notes, 2021, 2, 39-43.                                            | 0.7 | 4         |
| 4  | Searching for unifying laws of general adaptation syndrome. Physics of Life Reviews, 2021, 37, 97-99.                                                                    | 1.5 | 1         |
| 5  | GeneCloudOmics: A Data Analytic Cloud Platform for High-Throughput Gene Expression Analysis.<br>Frontiers in Bioinformatics, 2021, 1, .                                  | 1.0 | 4         |
| 6  | Systems Biology to Understand and Regulate Human Retroviral Proinflammatory Response. Frontiers<br>in Immunology, 2021, 12, 736349.                                      | 2.2 | 5         |
| 7  | ScatLay: utilizing transcriptome-wide noise for identifying and visualizing differentially expressed genes. Scientific Reports, 2020, 10, 17483.                         | 1.6 | 6         |
| 8  | Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00149.          | 1.9 | 46        |
| 9  | Attractor Concepts to Evaluate the Transcriptome-wide Dynamics Guiding Anaerobic to Aerobic State<br>Transition in Escherichia coli. Scientific Reports, 2020, 10, 5878. | 1.6 | 12        |
| 10 | Systems Biology Approaches for Understanding Biofilm Response. ACS Symposium Series, 2020, , 9-29.                                                                       | 0.5 | 0         |
| 11 | ABioTrans: A Biostatistical Tool for Transcriptomics Analysis. Frontiers in Genetics, 2019, 10, 499.                                                                     | 1.1 | 7         |
| 12 | Defining rules for cancer cell proliferation in TRAIL stimulation. Npj Systems Biology and Applications, 2019, 5, 5.                                                     | 1.4 | 7         |
| 13 | Longâ€range order and shortâ€range disorder in <i>Saccharomyces cerevisiae</i> biofilm. Engineering<br>Biology, 2019, 3, 12-19.                                          | 0.8 | 7         |
| 14 | Searching for simple rules in Pseudomonas aeruginosa biofilm formation. BMC Research Notes, 2019, 12, 763.                                                               | 0.6 | 3         |
| 15 | Largeâ€scaleâ€free network organisation is likely key for biofilm phase transition. Engineering Biology,<br>2019, 3, 67-71.                                              | 0.8 | 4         |
| 16 | Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models. Methods<br>in Molecular Biology, 2018, 1702, 171-201.                           | 0.4 | 10        |
| 17 | Hints from Information Theory for Analyzing Dynamic and High-Dimensional Biological Data. RNA Technologies, 2018, , 313-336.                                             | 0.2 | 1         |
| 18 | Order Parameter in Bacterial Biofilm Adaptive Response. Frontiers in Microbiology, 2018, 9, 1721.                                                                        | 1.5 | 8         |

KUMAR SELVARAJOO

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A systems biology approach to overcome TRAIL resistance in cancer treatment. Progress in Biophysics<br>and Molecular Biology, 2017, 128, 142-154. | 1.4 | 24        |
| 20 | Can the second law of thermodynamics hold in cell cultures?. Frontiers in Genetics, 2015, 6, 262.                                                 | 1.1 | 4         |
| 21 | Systems Biology Strategy Reveals PKCĄ̃ŽĄ́ is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma.<br>Frontiers in Immunology, 2015, 5, 659.    | 2.2 | 12        |
| 22 | The reduction of gene expression variability from single cells to populations follows simple statistical laws. Genomics, 2015, 105, 137-144.      | 1.3 | 33        |
| 23 | Tracking global gene expression responses in T cell differentiation. Gene, 2015, 569, 259-266.                                                    | 1.0 | 20        |
| 24 | Measuring merit: Take the risk. Science, 2015, 347, 139-140.                                                                                      | 6.0 | 2         |
| 25 | Advances in systems immunology and cancer. Frontiers in Physiology, 2014, 5, 249.                                                                 | 1.3 | 1         |
| 26 | Beyond MyD88 and TRIF Pathways in Toll-Like Receptor Signaling. Frontiers in Immunology, 2014, 5, 70.                                             | 2.2 | 61        |
| 27 | Parameter-less approaches for interpreting dynamic cellular response. Journal of Biological<br>Engineering, 2014, 8, 23.                          | 2.0 | 8         |
| 28 | Transcriptome-wide Variability in Single Embryonic Development Cells. Scientific Reports, 2014, 4, 7137.                                          | 1.6 | 66        |
| 29 | Physical Laws Shape Biology. Science, 2013, 339, 646-646.                                                                                         | 6.0 | 11        |
| 30 | A systems biology approach to suppress TNF-induced proinflammatory gene expressions. Cell<br>Communication and Signaling, 2013, 11, 84.           | 2.7 | 28        |
| 31 | Uncertainty and certainty in cellular dynamics. Frontiers in Genetics, 2013, 4, 68.                                                               | 1.1 | 4         |
| 32 | Non-genetic adaptive dynamics for cellular robustness. Frontiers in Genetics, 2013, 4, 287.                                                       | 1.1 | 3         |
| 33 | Basics of the Mammalian Immune System. Systems Biology, 2013, , 25-33.                                                                            | 0.1 | 0         |
| 34 | Stochasticity and Variability: Insights from Single-Cell Dynamics. Systems Biology, 2013, , 105-116.                                              | 0.1 | 0         |
| 35 | Systems Biology of Population Cell Response. Systems Biology, 2013, , 1-11.                                                                       | 0.1 | 0         |
| 36 | Investigating the TLR3 Signaling Dynamics. Systems Biology, 2013, , 65-74.                                                                        | 0.1 | 0         |

KUMAR SELVARAJOO

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inferring Novel Features of the TLR4 Pathways. Systems Biology, 2013, , 35-52.                                                                                              | 0.1 | Ο         |
| 38 | Investigating Single-Cell Stochasticity in TRAIL Signaling. Systems Biology, 2013, , 117-124.                                                                               | 0.1 | 0         |
| 39 | Finding Chaos in Biology. Systems Biology, 2013, , 131-140.                                                                                                                 | 0.1 | Ο         |
| 40 | Finding Self-organization from the Dynamic Gene Expressions of Innate Immune Responses. Frontiers in Physiology, 2012, 3, 192.                                              | 1.3 | 7         |
| 41 | Is central dogma a global property of cellular information flow?. Frontiers in Physiology, 2012, 3, 439.                                                                    | 1.3 | 28        |
| 42 | Investigation of stochasticity in TRAIL signaling cancer model. , 2012, , .                                                                                                 |     | 0         |
| 43 | The Recognition of Chaos in Host–Pathogen Response. Frontiers in Physiology, 2012, 3, 7.                                                                                    | 1.3 | 1         |
| 44 | Understanding multimodal biological decisions from single cell and population dynamics. Wiley<br>Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 385-399. | 6.6 | 24        |
| 45 | Emergence of macroscopic simplicity from the Tumor Necrosis Factor-alpha signaling dynamics.<br>Nature Precedings, 2011, , .                                                | 0.1 | 1         |
| 46 | Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling.<br>Cell Communication and Signaling, 2011, 9, 9.                       | 2.7 | 24        |
| 47 | Enhancing apoptosis in TRAIL-resistant cancer cells using fundamental response rules. Scientific Reports, 2011, 1, 144.                                                     | 1.6 | 26        |
| 48 | Signaling Flux Redistribution concept can switch survival to apoptosis in cancer cells. Nature Precedings, 2010, , .                                                        | 0.1 | 0         |
| 49 | Genetic vehicle comprising majority of lowly expressed genes guides cell fate decision. Nature Precedings, 2010, , .                                                        | 0.1 | Ο         |
| 50 | Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed. PLoS ONE, 2010, 5, e12116.                | 1.1 | 23        |
| 51 | Emergent Genome-Wide Control in Wildtype and Genetically Mutated Lipopolysaccarides-Stimulated Macrophages. PLoS ONE, 2009, 4, e4905.                                       | 1.1 | 45        |
| 52 | CAN COMPLEX CELLULAR PROCESSES BE GOVERNED BY SIMPLE LINEAR RULES?. Journal of Bioinformatics and Computational Biology, 2009, 07, 243-268.                                 | 0.3 | 20        |
| 53 | Local and global responses in complex gene regulation networks. Physica A: Statistical Mechanics and<br>Its Applications, 2009, 388, 1738-1746.                             | 1.2 | 40        |
| 54 | In Silico Models for Metabolic Systems Engineering. , 2009, , .                                                                                                             |     | 1         |

Kumar Selvarajoo

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Predicting Novel Features of Toll-Like Receptor 3 Signaling in Macrophages. PLoS ONE, 2009, 4, e4661.                                                   | 1.1 | 25        |
| 56 | Signaling Flux Redistribution at Toll-Like Receptor Pathway Junctions. PLoS ONE, 2008, 3, e3430.                                                        | 1.1 | 43        |
| 57 | Toll-like receptor signal transduction. Experimental and Molecular Medicine, 2007, 39, 421-438.                                                         | 3.2 | 211       |
| 58 | Gene expression waves. FEBS Journal, 2007, 274, 2878-2886.                                                                                              | 2.2 | 38        |
| 59 | Systematic Determination of Biological Network Topology: Nonintegral Connectivity Method (NICM). , 2007, , 449-471.                                     |     | 4         |
| 60 | Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions. PLoS ONE, 2007, 2, e776.                                          | 1.1 | 7         |
| 61 | Discovering differential activation machinery of the Toll-like receptor 4 signaling pathways in MyD88<br>knockouts. FEBS Letters, 2006, 580, 1457-1464. | 1.3 | 30        |