Gregory J Christianson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254512/publications.pdf

Version: 2024-02-01

34 papers 2,332 citations

279798 23 h-index 395702 33 g-index

34 all docs

34 docs citations

34 times ranked 2416 citing authors

#	Article	IF	CITATIONS
1	An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics. Science Translational Medicine, 2020, 12, .	12.4	37
2	Functional humanization of immunoglobulin heavy constant gamma 1 Fc domain human <i>FCGRT</i> transgenic mice. MAbs, 2020, 12, 1829334.	5.2	9
3	A human endothelial cell-based recycling assay for screening of FcRn targeted molecules. Nature Communications, 2018, 9, 621.	12.8	59
4	Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs, 2018, 10, 803-813.	5.2	26
5	Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infection and Immunity, 2017, 85, .	2.2	26
6	Precocious Interleukin 21 Expression in Naive Mice Identifies a Natural Helper Cell Population in Autoimmune Disease. Cell Reports, 2017, 21, 208-221.	6.4	19
7	Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies. Methods in Molecular Biology, 2016, 1438, 103-114.	0.9	19
8	Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB.Yaa Mice. PLoS ONE, 2016, 11, e0153059.	2.5	28
9	Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs. MAbs, 2015, 7, 344-351.	5.2	60
10	Dissection of the Neonatal Fc Receptor (FcRn)-Albumin Interface Using Mutagenesis and Anti-FcRn Albumin-blocking Antibodies. Journal of Biological Chemistry, 2014, 289, 17228-17239.	3.4	38
11	Expression of Neonatal Fc Receptor in the Eye. , 2014, 55, 1607.		54
12	IL-21 Is a Double-Edged Sword in the Systemic Lupus Erythematosus–like Disease of BXSB. <i>Yaa</i> Mice. Journal of Immunology, 2013, 191, 4581-4588.	0.8	50
13	Monoclonal antibodies directed against human FcRn and their applications. MAbs, 2012, 4, 208-216.	5.2	33
14	Proteasomes, TAP, and Endoplasmic Reticulum-Associated Aminopeptidase Associated with Antigen Processing Control CD4+Th Cell Responses by Regulating Indirect Presentation of MHC Class II-Restricted Cytoplasmic Antigens. Journal of Immunology, 2011, 186, 6683-6692.	0.8	10
15	Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies. Methods in Molecular Biology, 2010, 602, 93-104.	0.9	71
16	Neonatal FcR Expression in Bone Marrow-Derived Cells Functions to Protect Serum IgG from Catabolism. Journal of Immunology, 2007, 179, 4580-4588.	0.8	223
17	NF-κB Signaling Regulates Functional Expression of the MHC Class I-Related Neonatal Fc Receptor for IgG via Intronic Binding Sequences. Journal of Immunology, 2007, 179, 2999-3011.	0.8	90
18	Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. International Immunology, 2006, 18, 1759-1769.	4.0	281

#	Article	IF	Citations
19	Duration of Alloantigen Presentation and Avidity of T Cell Antigen Recognition Correlate with Immunodominance of CTL Response to Minor Histocompatibility Antigens. Journal of Immunology, 2004, 172, 6666-6674.	0.8	21
20	The MHC class l–like Fc receptor promotes humorally mediated autoimmune disease. Journal of Clinical Investigation, 2004, 113, 1328-1333.	8.2	109
21	The H4b Minor Histocompatibility Antigen Is Caused by a Combination of Genetically Determined and Posttranslational Modifications. Journal of Immunology, 2003, 170, 5133-5142.	0.8	19
22	The MHC Class I-Like IgG Receptor Controls Perinatal IgG Transport, IgG Homeostasis, and Fate of IgG-Fc-Coupled Drugs. Journal of Immunology, 2003, 170, 3528-3533.	0.8	408
23	How H13 Histocompatibility Peptides Differing by a Single Methyl Group and Lacking Conventional MHC Binding Anchor Motifs Determine Self-Nonself Discrimination. Journal of Immunology, 2002, 168, 283-289.	0.8	39
24	Real-time T-cell profiling identifies H60 as a major minor histocompatibility antigen in murine graft-versus-host disease. Blood, 2002, 100, 4259-4264.	1.4	74
25	Immunodominance of H60 Is Caused by an Abnormally High Precursor T Cell Pool Directed against Its Unique Minor Histocompatibility Antigen Peptide. Immunity, 2002, 17, 593-603.	14.3	83
26	Quantitative Analysis of the Immune Response to Mouse Non-MHC Transplantation Antigens In Vivo: The H60 Histocompatibility Antigen Dominates Over All Others. Journal of Immunology, 2001, 166, 4370-4379.	0.8	78
27	Identification of a CD8 T Cell That Can Independently Mediate Autoimmune Diabetes Development in the Complete Absence of CD4 T Cell Helper Functions. Journal of Immunology, 2000, 164, 3913-3918.	0.8	139
28	A New MHC Locus that Influences Class I Peptide Presentation. Immunity, 1999, 11, 507.	14.3	59
29	Positional Cloning and Molecular Characterization of an Immunodominant Cytotoxic Determinant of the Mouse H3 Minor Histocompatibility Complex. Immunity, 1998, 9, 687-698.	14.3	50
30	A New MHC Locus That Influences Class I Peptide Presentation. Immunity, 1997, 7, 641-651.	14.3	12
31	LACK OF GVHD ACROSS CLASSICAL SINGLE MINOR HISTOCOMPATIBILITY (miH) LOCUS BARRIERS IN MICE1,2. Transplantation, 1996, 61, 619-624.	1.0	23
32	Gene Mapping in a Murine Cell Line by Immunoselection with Cytotoxic T Lymphocytes. Genomics, 1994, 19, 273-279.	2.9	17
33	Deletion Mapping by Immunoselection against the H-Y Histocompatibility Antigen Further Resolves the Sxra Region of the Mouse Y Chromosome and Reveals Complexity of the Hya Locus. Genomics, 1994, 24, 159-168.	2.9	65
34	Ocular tissues contain inhibitors of lymphocyte mitogenesis. Current Eye Research, 1985, 4, 807-810.	1.5	3