
David A Maclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulated winter warming has negligible effects on germination success of Acadian Forest tree species. Canadian Journal of Forest Research, 2022, 52, 250-260.	1.7	4
2	Evaluating and quantifying the effect of various spruce budworm intervention strategies on forest carbon dynamics in Atlantic Canada. Forest Ecosystems, 2022, 9, 100052.	3.1	0
3	Evaluating annual spruce budworm defoliation using change detection of vegetation indices calculated from satellite hyperspectral imagery. Remote Sensing of Environment, 2021, 253, 112204.	11.0	19
4	Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172, 28-40.	11.1	33
5	Mixedwood management positively affects forest health during insect infestations in eastern North America1. Canadian Journal of Forest Research, 2021, 51, 910-920.	1.7	6
6	Contemporary status, distribution, and trends of mixedwoods in the northern United States. Canadian Journal of Forest Research, 2021, 51, 881-896.	1.7	7
7	Climate change experiment suggests divergent responses of tree seedlings in eastern North America's Acadian Forest Region over the 21st century. Canadian Journal of Forest Research, 2021, 51, 1888-1902.	1.7	9
8	Previous year outbreak conditions and spring climate predict spruce budworm population changes in the following year. Forest Ecology and Management, 2020, 458, 117737.	3.2	6
9	Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review, 2020, 50, 440-452.	4.8	9
10	A review of natural disturbances to inform implementation of ecological forestry in Nova Scotia, Canada. Environmental Reviews, 2020, 28, 387-414.	4.5	19
11	Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sensing Letters, 2020, 11, 777-786.	1.4	20
12	Hardwood-softwood composition influences early-instar larval dispersal mortality during a spruce budworm outbreak. Forest Ecology and Management, 2020, 463, 118035.	3.2	9
13	Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack. Canadian Journal of Forest Research, 2020, 50, 565-580.	1.7	4
14	Economics of Early Intervention to Suppress a Potential Spruce Budworm Outbreak on Crown Land in New Brunswick, Canada. Forests, 2019, 10, 481.	2.1	8
15	Forest structure more important than topography in determining windthrow during Hurricane Juan in Canada's Acadian Forest. Forest Ecology and Management, 2019, 434, 255-263.	3.2	25
16	Positive Results of an Early Intervention Strategy to Suppress a Spruce Budworm Outbreak after Five Years of Trials. Forests, 2019, 10, 448.	2.1	42
17	Spatial-Temporal Patterns of Spruce Budworm Defoliation within Plots in Québec. Forests, 2019, 10, 232.	2.1	2
18	Growth-mortality attributes and species composition determine carbon sequestration and dynamics of old stand types in the Acadian Forest of New Brunswick, Canada. Annals of Forest Science, 2019, 76, 1.	2.0	3

#	Article	IF	CITATIONS
19	A Conceptual Framework for the Spruce Budworm Early Intervention Strategy: Can Outbreaks be Stopped?. Forests, 2019, 10, 910.	2.1	42
20	Modelling variation and temporal dynamics of individual tree defoliation caused by spruce budworm in Maine, US and New Brunswick, Canada. Forestry, 2019, 92, 133-145.	2.3	4
21	Disentangling variables that influence growth response of balsam fir regeneration during a spruce budworm outbreak. Forest Ecology and Management, 2019, 433, 13-23.	3.2	6
22	Protection Strategy against Spruce Budworm. Forests, 2019, 10, 1137.	2.1	7
23	Forest overstory composition and seedling height influence defoliation of understory regeneration by spruce budworm. Forest Ecology and Management, 2018, 409, 353-360.	3.2	15
24	Partial harvest to reduce occurrence of American beech affected by beech bark disease: 10 year results. Forestry, 2018, 91, 73-82.	2.3	8
25	Effects of Hardwood Content on Balsam Fir Defoliation during the Building Phase of a Spruce Budworm Outbreak. Forests, 2018, 9, 530.	2.1	26
26	Forecasting Forest Inventory Using Imputed Tree Lists for LiDAR Grid Cells and a Tree-List Growth Model. Forests, 2018, 9, 167.	2.1	25
27	Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 1-11.	11.1	26
28	Crossâ€scale effects of spruce budworm outbreaks on boreal warblers in eastern Canada. Ecology and Evolution, 2018, 8, 7334-7345.	1.9	9
29	Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery. Forests, 2018, 9, 357.	2.1	26
30	Quantification of forest canopy changes caused by spruce budworm defoliation using digital hemispherical imagery. Agricultural and Forest Meteorology, 2018, 262, 89-99.	4.8	8
31	Imputing Tree Lists for New Brunswick Spruce Plantations Through Nearest-Neighbor Matching of Airborne Laser Scan and Inventory Plot Data. Canadian Journal of Remote Sensing, 2017, 43, 269-285.	2.4	14
32	Salvaging has minimal impacts on vegetation regeneration 10 years after severe windthrow. Forest Ecology and Management, 2017, 406, 19-27.	3.2	16
33	Evaluating the influence of varying levels of spruce budworm defoliation on annualized individual tree growth and mortality in Maine, USA and New Brunswick, Canada. Forest Ecology and Management, 2017, 396, 184-194.	3.2	28
34	Five decades of balsam fir stand development after spruce budworm-related mortality. Forest Ecology and Management, 2017, 400, 129-138.	3.2	11
35	Even low levels of spruce budworm defoliation affect mortality and ingrowth but net growth is more driven by competition. Canadian Journal of Forest Research, 2017, 47, 1546-1556.	1.7	16
36	Development and evaluation of a biomass increment based index for site productivity. Canadian Journal of Forest Research, 2017, 47, 400-410.	1.7	26

#	Article	IF	CITATIONS
37	Needle longevity of balsam fir is increased by defoliation by spruce budworm. Trees - Structure and Function, 2017, 31, 1933-1944.	1.9	8
38	Managing Hardwood-Softwood Mixtures for Future Forests in Eastern North America: Assessing Suitability to Projected Climate Change. Journal of Forestry, 2017, 115, 190-201.	1.0	27
39	Impacts of insect outbreaks on tree mortality, productivity, and stand development. Canadian Entomologist, 2016, 148, S138-S159.	0.8	63
40	Effect of local stand structure on leaf area, growth, and growth efficiency following thinning of white spruce. Forest Ecology and Management, 2016, 368, 55-62.	3.2	6
41	The influence of natural disturbances on developmental patterns in Acadian mixedwood forests from 1946 to 2008. Dendrochronologia, 2016, 37, 9-16.	2.2	8
42	Demographic response of a neotropical migrant songbird to forest management and climate change scenarios. Forest Ecology and Management, 2016, 359, 309-320.	3.2	12
43	Public forest policy development in New Brunswick, Canada: multiple streams approach, advocacy coalition framework, and the role of science. Ecology and Society, 2015, 20, .	2.3	16
44	Effects of species and hardwood–softwood mix on the balance of growth and mortality in old stands in New Brunswick, Canada. Forest Ecology and Management, 2015, 358, 192-201.	3.2	3
45	Windthrow and growth response following a spruce budworm inspired, variable retention harvest in New Brunswick, Canada. Canadian Journal of Forest Research, 2015, 45, 659-666.	1.7	10
46	Experimental manipulation of habitat structures in intensively managed spruce plantations to increase their value for biodiversity conservation. Forestry Chronicle, 2015, 91, 161-175.	0.6	18
47	Do biomass removal and structure-enhancing treatments influence deadwood characteristics following commercial thinning in spruce plantations in New Brunswick, Canada?. Canadian Journal of Forest Research, 2015, 45, 1407-1418.	1.7	7
48	Modeling Insect Disturbance Across Forested Landscapes: Insights from the Spruce Budworm. , 2015, , 93-134.		26
49	Estimation of potential impacts of climate change on growth and yield of temperate tree species. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 159-178.	2.1	21
50	Estimating forest vulnerability to the next spruce budworm outbreak: will past silvicultural efforts pay dividends?. Canadian Journal of Forest Research, 2015, 45, 314-324.	1.7	21
51	A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change. PLoS ONE, 2015, 10, e0132066.	2.5	46
52	Spatial variability of spruce budworm defoliation at different scales. Forest Ecology and Management, 2014, 328, 10-19.	3.2	14
53	Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology. Canadian Journal of Forest Research, 2013, 43, 1162-1171.	1.7	42
54	Relationships between Pikonema alaskensis larval density and shoot growth and production in young black spruce. Forest Ecology and Management, 2013, 292, 130-138.	3.2	3

#	Article	IF	CITATIONS
55	A Comprehensive Greenhouse Gas Balance for a Forest Company Operating in Northeast North America. Journal of Forestry, 2013, 111, 194-205.	1.0	4
56	Generation of soil drainage equations from an artificial neural network-analysis approach. Canadian Journal of Soil Science, 2013, 93, 329-342.	1.2	4
57	Re-examining wood supply in light of future spruce budworm outbreaks: A case study in New Brunswick. Forestry Chronicle, 2013, 89, 42-53.	0.6	21
58	The social benefits of increasing protected natural areas: an Eastern Canadian case study using the contingent valuation method. Forestry, 2012, 85, 531-538.	2.3	3
59	Regeneration and stand development following a spruce budworm outbreak, spruce budworm inspired harvest, and salvage harvest. Canadian Journal of Forest Research, 2012, 42, 1759-1770.	1.7	21
60	Economic impacts of forest pests: a case study of spruce budworm outbreaks and control in New Brunswick, Canada. Canadian Journal of Forest Research, 2012, 42, 490-505.	1.7	59
61	Modeling insecticide protection versus forest management approaches to reducing balsam fir sawfly and hemlock looper damage. Forest Ecology and Management, 2012, 265, 150-160.	3.2	5
62	Growth and mortality of balsam fir- and spruce-tolerant hardwood stands as influenced by stand characteristics and spruce budworm defoliation. Forest Ecology and Management, 2012, 280, 82-92.	3.2	20
63	Using JABOWA-3 for forest growth and yield predictions under diverse forest conditions of Nova Scotia, Canada. Forestry Chronicle, 2012, 88, 708-721.	0.6	12
64	Benefit-cost analysis of spruce budworm (Choristoneura fumiferana Clem.) control: Incorporating market and non-market values. Journal of Environmental Management, 2012, 93, 104-112.	7.8	20
65	Comparing growth and mortality of a spruce budworm (<i>Choristoneura fumiferana</i>) inspired harvest versus a spruce budworm outbreak. Canadian Journal of Forest Research, 2011, 41, 2176-2192.	1.7	9
66	Impacts of hemlock looper defoliation on growth and survival of balsam fir, black spruce and white birch in Newfoundland, Canada. Forest Ecology and Management, 2011, 261, 1106-1114.	3.2	13
67	Social Benefits of Controlling Forest Insect Outbreaks: A Contingent Valuation Analysis in Two Canadian Provinces. Canadian Journal of Agricultural Economics, 2011, 59, 383-404.	2.1	13
68	Integration of bioenergy strategies into forest management scenarios for Crown land in New Brunswick, Canada. Canadian Journal of Forest Research, 2011, 41, 1319-1332.	1.7	3
69	Balsam fir sawfly defoliation effects on survival and growth quantified from permanent plots and dendrochronology. Forestry, 2011, 84, 349-362.	2.3	5
70	Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests. Ecosystems, 2010, 13, 917-931.	3.4	94
71	The TRANSFOR success story: International forestry education through exchange. Forestry Chronicle, 2010, 86, 57-62.	0.6	2
72	Assessing costs and benefits of pest management on forested landbases in eastern and western Canada. Journal of Forest Economics, 2010, 16, 19-34.	0.2	8

#	Article	IF	CITATIONS
73	Estimating cumulative defoliation of balsam fir from hemlock looper and balsam fir sawfly using aerial defoliation survey in western Newfoundland, Canada. Forest Ecology and Management, 2010, 259, 591-597.	3.2	10
74	A benefit–cost analysis of establishing protected natural areas in New Brunswick, Canada. Forest Policy and Economics, 2010, 12, 94-103.	3.4	18
75	Prediction of balsam fir sawfly defoliation using a Bayesian network model. Canadian Journal of Forest Research, 2010, 40, 2322-2332.	1.7	6
76	Spruce budworm and management effects on forest and wood product carbon for an intensively managed forest. Canadian Journal of Forest Research, 2010, 40, 1736-1750.	1.7	32
77	Temporal changes in species composition of mixedwood stands in northwest New Brunswick: 1946–2008. Canadian Journal of Forest Research, 2010, 40, 1-12.	1.7	29
78	Public attitudes about forest pest outbreaks and control: Case studies in two Canadian provinces. Forest Ecology and Management, 2009, 257, 1333-1343.	3.2	34
79	The economics of carbon sequestration through pest management: application to forested landbases in New Brunswick and Saskatchewan, Canada. Forest Policy and Economics, 2009, 11, 525-534.	3.4	13
80	A novel approach to optimize management strategies for carbon stored in both forests and wood products. Forest Ecology and Management, 2008, 256, 786-797.	3.2	111
81	Optimal on- and off-site forest carbon sequestration under existing timber supply constraints in northern New Brunswick. Canadian Journal of Forest Research, 2008, 38, 2784-2796.	1.7	12
82	Impact of a spruce budworm outbreak in balsam fir and subsequent stand development over a 40-year period. Forestry Chronicle, 2008, 84, 60-69.	0.6	16
83	Photo-interpretation and remote sensing at the Faculty of Forestry and Environmental Management, UNB. Forestry Chronicle, 2008, 84, 534-538.	0.6	0
84	Validation of Spruce Budworm Outbreak History Developed from Aerial Sketch Mapping of Defoliation in New Brunswick. Northern Journal of Applied Forestry, 2008, 25, 139-145.	0.5	21
85	Making sense of the "forestry research game―at universities. Forestry Chronicle, 2008, 84, 543-547.	0.6	1
86	Fire danger monitoring using RADARSATâ€1 over northern boreal forests. International Journal of Remote Sensing, 2007, 28, 1317-1338.	2.9	30
87	Forest and economic impacts of alternative management strategies on Crown land in New Brunswick. Canadian Journal of Forest Research, 2007, 37, 2624-2636.	1.7	6
88	Dead wood dynamics in declining balsam fir and spruce stands in New Brunswick, Canada. Canadian Journal of Forest Research, 2007, 37, 750-762.	1.7	26
89	Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories. International Journal of Wildland Fire, 2007, 16, 71.	2.4	15
90	Spatiotemporal patterns of mortality in declining balsam fir and spruce stands. Forest Ecology and Management, 2007, 253, 188-201.	3.2	32

#	Article	IF	CITATIONS
91	Spatial distribution of carbon in natural and managed stands in an industrial forest in New Brunswick, Canada. Forest Ecology and Management, 2007, 253, 148-160.	3.2	22
92	Using cumulative NOAA-AVHRR spectral indices for estimating fire danger codes in northern boreal forests. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 335-342.	2.8	11
93	Optimized harvest planning under alternative foliage-protection scenarios to reduce volume losses to spruce budworm. Canadian Journal of Forest Research, 2007, 37, 1755-1769.	1.7	40
94	Does the Canadian forest sector have a viable future? Is current forest management acceptable to the general public? Would you advise your kids to take forestry?. Forestry Chronicle, 2007, 83, 54-60.	0.6	4
95	Effects of Gypsy Moth Defoliation on Softwood and Hardwood Growth and Mortality in New Brunswick, Canada. Northern Journal of Applied Forestry, 2007, 24, 138-145.	0.5	9
96	Predicting slowâ€drying fire weather index fuel moisture codes with NOAAâ€AVHRR images in Canada's northern boreal forests. International Journal of Remote Sensing, 2006, 27, 3881-3902.	2.9	19
97	Triad forest management: Scenario analysis of forest zoning effects on timber and non-timber values in New Brunswick, Canada. Forestry Chronicle, 2006, 82, 496-511.	0.6	34
98	Modeling carbon sequestration with CO2Fix and a timber supply model for use in forest management planning. Canadian Journal of Soil Science, 2006, 86, 219-233.	1.2	18
99	Effects of Intensive Forest Management on Stand and Landscape Characteristics in Northern New Brunswick, Canada (1945–2027). Landscape Ecology, 2006, 21, 509-524.	4.2	57
100	Risk of extirpation for vertebrate species on an industrial forest in New Brunswick, Canada: 1945, 2002, and 2027. Canadian Journal of Forest Research, 2006, 36, 467-481.	1.7	3
101	Net Daytime Carbon Dioxide Fluxes Over Eastern Canadian Forests: An Application of MODIS Imagery. , 2006, , .		0
102	Forest Management in New Brunswick: the Jaakko Pöyry Study, the Legislative Select Committee on Wood Supply, and where do we go from here?. Forestry Chronicle, 2005, 81, 92-96.	0.6	8
103	Changes in landscape composition and stand structure from 1945–2002 on an industrial forest in New Brunswick, Canada. Canadian Journal of Forest Research, 2005, 35, 1965-1977.	1.7	57
104	Rate and causes of decline of mature and overmature balsam fir and spruce stands in New Brunswick, Canada. Canadian Journal of Forest Research, 2005, 35, 2479-2490.	1.7	35
105	Evaluating vertebrate species risk on an industrial forest landscape. Forest Ecology and Management, 2005, 204, 279-296.	3.2	14
106	Using heterogeneity and representation of ecosite criteria to select forest reserves in an intensively managed industrial forest. Biological Conservation, 2005, 125, 237-248.	4.1	27
107	Effects of surrounding forest and site conditions on growth reduction of balsam fir and spruce caused by spruce budworm defoliation. Canadian Journal of Forest Research, 2004, 34, 2351-2362.	1.7	20
108	Spruce budworm defoliation and growth loss in young balsam fir: relationships between volume growth and foliage weight in spaced and unspaced, defoliated and protected stands. Forest Ecology and Management, 2003, 179, 37-53.	3.2	19

#	Article	IF	CITATIONS
109	Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.). Dendrochronologia, 2003, 21, 23-31.	2.2	25
110	Potential wood supply losses to spruce budworm in New Brunswick estimated using the Spruce Budworm Decision Support System. Forestry Chronicle, 2002, 78, 739-750.	0.6	37
111	The Spruce Budworm Decision Support System: forest protection planning to sustain long-term wood supply. Canadian Journal of Forest Research, 2001, 31, 1742-1757.	1.7	80
112	Allocation of conservation efforts over the landscape: the TRIAD approach. , 2001, , 283-303.		7
113	Spruce budworm decision support system: lessons learned in development and implementation. Computers and Electronics in Agriculture, 2000, 27, 293-314.	7.7	12
114	Use of forest inventory and monitoring data in the spruce budworm decision support system. Computers and Electronics in Agriculture, 2000, 28, 101-118.	7.7	9
115	Stand growth model calibration for use in forest pest impact assessment. Forestry Chronicle, 1999, 75, 141-152.	0.6	69
116	Fundy Model Forest: Partners in sustainable forest management. Forestry Chronicle, 1999, 75, 219-227.	0.6	3
117	Effects of Mixed Stand Management to Reduce Impacts of Spruce Budworm Defoliation on Balsam Fir Stand-Level Growth and Yield. Northern Journal of Applied Forestry, 1999, 16, 19-24.	0.5	19
118	The impact of hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) on balsam fir and spruce in New Brunswick, Canada. Forest Ecology and Management, 1999, 120, 77-87.	3.2	34
119	Spruce budworm defoliation and growth loss in young balsam fir: patterns of shoot, needle and foliage weight production over a nine-year outbreak cycle. Forest Ecology and Management, 1999, 123, 115-133.	3.2	19
120	Computer Corner: Forester's Yield Curve Designer Software. Northern Journal of Applied Forestry, 1998, 15, 23-27.	0.5	3
121	Sample Sizes Required To Estimate Defoliation of Spruce and Balsam Fir Caused by Spruce Budworm Accurately. Northern Journal of Applied Forestry, 1998, 15, 135-140.	0.5	10
122	Effects of stand and site characteristics on susceptibility and vulnerability of balsam fir and spruce to spruce budworm in New Brunswick. Canadian Journal of Forest Research, 1997, 27, 1859-1871.	1.7	55
123	Effects of stand and site characteristics on susceptibility and vulnerability of balsam fir and spruce to spruce budworm in New Brunswick. Canadian Journal of Forest Research, 1997, 27, 1859-1871.	1.7	7
124	Accuracy of aerial sketch-mapping estimates of spruce budworm defoliation in New Brunswick. Canadian Journal of Forest Research, 1996, 26, 2099-2108.	1.7	71
125	The influence of hardwood content on balsam fir defoliation by spruce budworm. Canadian Journal of Forest Research, 1996, 26, 1620-1628.	1.7	135
126	Forest management strategies to reduce spruce budworm damage in the Fundy Model Forest. Forestry Chronicle, 1996, 72, 399-405.	0.6	41

#	Article	IF	CITATIONS
127	The relation of balsam fir volume increment to cumulative spruce budworm defoliation. Forestry Chronicle, 1996, 72, 533-540.	0.6	22
128	Silvicultural approaches to integrated insect management: The Green Plan Silvicultural Insect Management Network. Forestry Chronicle, 1996, 72, 367-369.	0.6	2
129	The role of a stand dynamics model in the spruce budworm decision support system. Canadian Journal of Forest Research, 1996, 26, 1731-1741.	1.7	28
130	Patterns of balsam fir foliar production and growth in relation to defoliation by spruce budworm. Canadian Journal of Forest Research, 1995, 25, 1128-1136.	1.7	45
131	Spatial and temporal patterns of balsam fir mortality in spaced and unspaced stands caused by spruce budworm defoliation. Canadian Journal of Forest Research, 1995, 25, 902-911.	1.7	33
132	Predicting effects of defoliation on spruce—fir stand development: a management-oriented growth and yield model. Forest Ecology and Management, 1994, 69, 283-298.	3.2	20
133	Analysis of high resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis. Remote Sensing of Environment, 1992, 40, 125-136.	11.0	45
134	A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements. International Journal of Remote Sensing, 1991, 12, 387-400.	2.9	74
135	Impact of forest pests and fire on stand growth and timber yield: implications for forest management planning. Canadian Journal of Forest Research, 1990, 20, 391-404.	1.7	42
136	Seasonal trends and effects of temperature and rainfall on stem electrical capacitance of spruce and fir trees. Canadian Journal of Forest Research, 1990, 20, 970-977.	1.7	10
137	Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Canadian Journal of Forest Research, 1989, 19, 1087-1095.	1.7	112
138	Spruce budworm populations, defoliation, and changes in stand condition during an uncontrolled spruce budworm outbreak on Cape Breton Island, Nova Scotia. Canadian Journal of Forest Research, 1989, 19, 1077-1086.	1.7	42
139	The use of electrical capacitance to determine growth and vigor of spruce and fir trees and stands in New Brunswick. Canadian Journal of Forest Research, 1988, 18, 587-594.	1.7	5
140	Effects of Spruce Budworm Outbreaks on the Productivity and Stability of Balsam Fir Forests. Forestry Chronicle, 1984, 60, 273-279.	0.6	123
141	A Method to Determine Effects of Spruce Budworm on Stand Yield and Wood Supply Projections for New Brunswick. Forestry Chronicle, 1984, 60, 167-173.	0.6	11
142	An evaluation of growth response of young, spaced balsam fir to 3 years of spruce budworm spraying with Bacillusthuringiensis. Canadian Journal of Forest Research, 1984, 14, 404-411.	1.7	4
143	Effectiveness of spruce budworm spraying in New Brunswick in protecting the spruce component of spruce–fir stands. Canadian Journal of Forest Research, 1984, 14, 163-176.	1.7	19
144	Sample size – precision relationships for use in estimating stand characteristics and spruce budworm caused tree mortality. Canadian Journal of Forest Research, 1983, 13, 548-555.	1.7	5

#	Article	IF	CITATIONS
145	Defoliation by spruce budworm: estimation by ocular and shoot-count methods and variability among branches, trees, and stands. Canadian Journal of Forest Research, 1982, 12, 582-594.	1.7	44
146	Vulnerability of Fir-Spruce Stands During Uncontrolled Spruce Budworm Outbreaks: A Review and Discussion. Forestry Chronicle, 1980, 56, 213-221.	0.6	246
147	Simulation of wildfire effects on the nitrogen cycle of a Pinus banksiana ecosystem in New Brunswick, Canada. Ecological Modelling, 1980, 10, 167-192.	2.5	10
148	Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Canadian Journal of Botany, 1978, 56, 2730-2749.	1.1	97
149	Litter production and forest floor nutrient dynamics in pine and hardwood stands of New Brunswick, Canada. Ecography, 1978, 1, 1-15.	4.5	17
150	Changes in understory vegetation with increasing stand age in New Brunswick forests: species composition, cover, biomass, and nutrients. Canadian Journal of Botany, 1977, 55, 2818-2831.	1.1	77
151	Nutrient accumulation for postfire jack pine and hardwood succession patterns in New Brunswick. Canadian Journal of Forest Research, 1977, 7, 562-578.	1.7	46
152	Biomass of jack pine and mixed hardwood stands in northeastern New Brunswick. Canadian Journal of Forest Research, 1976, 6, 441-447.	1.7	33
153	Cotton grass (<i>Eriophorum vaginatum</i>) germination requirements and colonizing potential in the Arctic. Canadian Journal of Botany, 1973, 51, 2509-2513.	1.1	29
154	Topkill and stem defects initiated during an uncontrolled spruce budworm outbreak on Cape Breton Island, Nova Scotia. Forestry, 0, , 1-10.	2.3	0