
Sherif Keshk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile approach to the synthesis of bilayer hematite films for efficient photocatalytic degradation of methylene blue dye in aqueous solution. International Journal of Environmental Analytical Chemistry, 2024, 104, 813-826.	1.8	4
2	Synthesis of a graphene oxide/ <scp> ZnFe ₂ O ₄ </scp> /polyaniline nanocomposite and its structural and electrochemical characterization for supercapacitor application. International Journal of Energy Research, 2022, 46, 2438-2445.	2.2	16
3	A facile approach for the synthesis of spinel zinc ferrite/cellulose as an effective photocatalyst for the degradation of methylene blue in aqueous solution. Cellulose, 2022, 29, 2565-2576.	2.4	16
4	Synthesis, Characterization and Optical Properties of Oxidized Poly Vinyl Alcohol. ChemistrySelect, 2022, 7, .	0.7	6
5	Highly conducting solid electrolyte films based on bivalent cations (Zn, Fe, and Ni)/oxidized PVA composites. Journal of Non-Crystalline Solids, 2022, 588, 121609.	1.5	2
6	Synthesis and characterization of cellulose hydrogel/graphene oxide/polyaniline composite for highâ€performing supercapacitors. International Journal of Energy Research, 2022, 46, 13844-13854.	2.2	2
7	Physicochemical characterization of low sulfonated polyether ether ketone/Smectite clay composite for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2021, 138, .	1.3	13
8	Incorporating of layered double hydroxide/sepiolite to improve the performance of sulfonated poly(ether ether ketone) composite membranes for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2021, 138, 50364.	1.3	15
9	Synthesis and characterization of dialdehyde cellulose/aminoâ€functionalized <scp>MCM</scp> â€41 c <scp>oreâ€shell</scp> microspheres as a new ecoâ€friendly flameâ€retardant nanocomposite. Journal of Applied Polymer Science, 2021, 138, 50215.	1.3	8
10	Structure, thermal stability and electrical properties of c elluloseâ€6â€phosphate : development of a novel fast Naâ€ionic conductor. Polymer International, 2021, 70, 1290-1297.	1.6	2
11	Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater. New Journal of Chemistry, 2020, 44, 2291-2302.	1.4	29
12	Synthesis, characterization and ampyrone drug release behavior of magnetite nanoparticle/2,3-dialdehyde cellulose-6-phosphate composite. Cellulose, 2020, 27, 1603-1618.	2.4	6
13	Physicochemical properties of a nanocomposite (graphene oxide-hydroxyapatite-cellulose) immobilized by Ag nanoparticles for biomedical applications. Results in Physics, 2020, 16, 102990.	2.0	35
14	Biopolymer Nanocomposite Based Food Packaging. Food Engineering Series, 2020, , 177-188.	0.3	0
15	Synthesis of a Magnetic Nanoparticles/Dialdehyde Starchâ€Based Composite Film for Food Packaging. Starch/Staerke, 2019, 71, 1800035.	1.1	18
16	Synthesis and evaluation of N-allylthiourea-modified chitosan for adsorptive removal of arsenazo III dye from aqueous solutions. International Journal of Biological Macromolecules, 2019, 137, 107-118.	3.6	14
17	Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor. Carbohydrate Polymers, 2019, 221, 29-36.	5.1	25
18	Novel synthesis of flame-retardant magnetic nanoparticles/hydroxy acid cellulose-6-phosphate composite. Materials Research Express, 2019, 6, 085310.	0.8	7

SHERIF KESHK

#	Article	IF	CITATIONS
19	Synthesis and characterization of novel Schiff's bases derived from dialdehyde cellulose-6-phosphate. Cellulose, 2019, 26, 3703-3712.	2.4	15
20	Preparation and physicochemical characterization of zinc oxide/sodium cellulosecomposite for food packaging. Turkish Journal of Chemistry, 2019, 43, 94-105.	0.5	26
21	Suppression efficacy of lignosulfonate/mercerized cotton fiber composite against cancer cell's activities. Advanced Composites Letters, 2019, 28, 096369351987597.	1.3	6
22	Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Materials Research Express, 2019, 6, 025312.	0.8	10
23	Optical and structural properties of polyvinyl alcohol loaded with different concentrations of lignosulfonate. Journal of Vinyl and Additive Technology, 2019, 25, 85-90.	1.8	7
24	Synthesis and characterization of wide-scale UV–vis CUT-OFF laser filter using methyl violet-6B/PMMA polymeric composite films. Sensors and Actuators A: Physical, 2018, 269, 388-393.	2.0	17
25	Physicochemical characterization of different cellulose polymorphs/graphene oxide composites and their antibacterial activity. Turkish Journal of Chemistry, 2018, 42, .	0.5	0
26	Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Optics and Laser Technology, 2017, 90, 197-200.	2.2	55
27	New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol. Green Chemistry, 2017, 19, 5144-5151.	4.6	63
28	An unexpected reactivity during periodate oxidation of chitosan and the affinity of its 2, 3-di-aldehyde toward sulfa drugs. Carbohydrate Polymers, 2017, 175, 565-574.	5.1	41
29	Natural bacterial biodegradable medical polymers. , 2017, , 295-319.		6
30	Natural biodegradable medical polymers. , 2017, , 279-294.		2
31	Cellulase Application in Enzymatic Hydrolysis of Biomass. , 2016, , 185-191.		5
32	Peculiar behavior of starch 2,3-dialdehyde towards sulfanilamide and sulfathiazole. Carbohydrate Polymers, 2016, 152, 624-631.	5.1	22
33	Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydrate Polymers, 2015, 127, 246-251.	5.1	55
34	Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose. Carbohydrate Polymers, 2015, 134, 687-694.	5.1	12
35	Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures. Carbohydrate Polymers, 2015, 115, 658-662.	5.1	31
36	Bacterial Cellulose Production and its Industrial Applications. Journal of Bioprocessing & Biotechniques, 2014, 04, .	0.2	210

SHERIF KESHK

#	Article	IF	CITATIONS
37	Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydrate Polymers, 2014, 99, 98-100.	5.1	87
38	A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf. Carbohydrate Polymers, 2011, 84, 1301-1305.	5.1	31
39	Evaluation of multifunctional properties of cotton fabric based on metal/chitosan film. Carbohydrate Polymers, 2010, 80, 504-512.	5.1	72
40	Synthesis of 5-spirocyclohexyl-2,4-dithiohydantoin derivatives: a potential anti-leishmaniasis agent. Monatshefte Für Chemie, 2009, 140, 243-249.	0.9	5
41	Homogenous reactions of cellulose from different natural sources. Carbohydrate Polymers, 2008, 74, 942-945.	5.1	39
42	Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme and Microbial Technology, 2006, 40, 9-12.	1.6	33
43	Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydrate Polymers, 2006, 65, 202-206.	5.1	61
44	Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbial Technology, 2006, 40, 4-8.	1.6	110
45	The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Applied Microbiology and Biotechnology, 2006, 72, 291-296.	1.7	80
46	Physical Structure Characterization of High Viscosity Kenaf Bast Pulps. Kami Pa Gikyoshi/Japan Tappi Journal, 2005, 59, 1833-1843.	0.1	4
47	Structure of Nascent Microbial Cellulose VI. Influence of Positions of Sulfonate Groups in Fluorescent Brightener on Crystal Structure of Microbial Cellulose. Polymer Journal, 1999, 31, 61-65.	1.3	10
48	Structure of Nascent Microbial Cellulose V. Influence of Number of Sulfonate Group in Fluorescent Brightener on Crystal Structure of Microbial Cellulose. Polymer Journal, 1998, 30, 996-1000.	1.3	16
49	Gum Arabic dialdehyde thiosemicarbazone chelating resins for removal mercury (II) from aqueous solutions. , 0, 151, 403-413.		8
50	Grafting of Cellulose Extracted from Kenaf Using Xanthate Method. Journal of Basic & Applied Sciences, 0, 10, 339-343.	0.8	1