
Daniel Bailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO ₂ , a UO ₂ Fuel Analogue. ACS Applied Materials & Interfaces, 2016, 8, 10562-10571.	8.0	56
2	Contribution of Energetically Reactive Surface Features to the Dissolution of CeO ₂ and ThO ₂ Analogues for Spent Nuclear Fuel Microstructures. ACS Applied Materials & Interfaces, 2014, 6, 12279-12289.	8.0	30
3	Review of zirconolite crystal chemistry and aqueous durability. Advances in Applied Ceramics, 2021, 120, 69-83.	1.1	25
4	Immobilizing Pertechnetate in Ettringite via Sulfate Substitution. Environmental Science & Technology, 2020, 54, 13610-13618.	10.0	20
5	Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras. Npj Materials Degradation, 2017, 1, .	5.8	19
6	Characterisation and disposability assessment of multi-waste stream in-container vitrified products for higher activity radioactive waste. Journal of Hazardous Materials, 2021, 401, 123764.	12.4	19
7	Synthesis and characterisation of brannerite compositions (U0.9Ce0.1)1â^'xMxTi2O6 (M = Gd3+, Ca2+) for the immobilisation of MOX residues. RSC Advances, 2018, 8, 2092-2099.	3.6	15
8	Synthesis, characterisation and corrosion behaviour of simulant Chernobyl nuclear meltdown materials. Npj Materials Degradation, 2020, 4, .	5.8	13
9	A new approach to the immobilisation of technetium and transuranics: Co-disposal in a zirconolite ceramic matrix. Journal of Nuclear Materials, 2020, 528, 151885.	2.7	9
10	Synthesis and Characterization of Brannerite Compositions for MOX Residue Disposal. MRS Advances, 2017, 2, 557-562.	0.9	8
11	Synthesis and characterisation of the hollandite solid solution Ba1.2-xCsxFe2.4-xTi5.6+xO16 for partitioning and conditioning of radiocaesium. Journal of Nuclear Materials, 2018, 503, 164-170.	2.7	8
12	Synthesis of Ca1-xCexZrTi2-2xAl2xO7 zirconolite ceramics for plutonium disposition. Journal of Nuclear Materials, 2021, 556, 153198.	2.7	8
13	Objective colour analysis from digital images as a nuclear forensic tool. Forensic Science International, 2021, 319, 110678.	2.2	6
14	Synthesis of simulant â€~lava-like' fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown. MRS Advances, 2017, 2, 609-614.	0.9	5
15	Thermal treatment of nuclear fuel-containing Magnox sludge radioactive waste. Journal of Nuclear Materials, 2021, 552, 152965.	2.7	5
16	Spectroscopic evaluation of U ^{VI} –cement mineral interactions: ettringite and hydrotalcite. Journal of Synchrotron Radiation, 2022, 29, 89-102.	2.4	5
17	Synthesis and characterization of iodovanadinite using Pdl _{2,} an iodine source for the immobilisation of radioiodine. RSC Advances, 2020, 10, 25116-25124.	3.6	4
18	On the existence of AgM ₉ (VO ₄) ₆ I (M = Ba, Pb). RSC Advances, 2017, 7, 49004-49009.	3.6	3

DANIEL BAILEY

#	Article	IF	CITATIONS
19	Synthesis and characterisation of HIP Ca0.80Ce0.20ZrTi1.60Cr0.40O7 zirconolite and observations of the ceramic–canister interface. MRS Advances, 2021, 6, 112-118.	0.9	3
20	Ceramic Immobilization Options for Technetium. MRS Advances, 2017, 2, 753-758.	0.9	2
21	Ba1.2-xCsxM1.2-x/2Ti6.8+x/2O16 (M = Ni, Zn) hollandites for the immobilisation of radiocaesium. MRS Advances, 2020, 5, 55-64.	0.9	2
22	Development of monazite glass-ceramic wasteforms for the immobilisation of pyroprocessing wastes. MRS Advances, 2022, 7, 81-85.	0.9	2
23	Reducing the uncertainty of nuclear fuel dissolution: an investigation of UO2 analogue CeO2. Materials Research Society Symposia Proceedings, 2013, 1518, 151-156.	0.1	1
24	A synchrotron X-ray spectroscopy study of titanium co-ordination in explosive melt glass derived from the trinity nuclear test. RSC Advances, 2019, 9, 12921-12927.	3.6	1
25	Ce and U speciation in wasteforms for thermal treatment of plutonium bearing wastes, probed by L3 edge XANES. IOP Conference Series: Materials Science and Engineering, 2020, 818, 012019.	0.6	1
26	Ceramic-based stabilization/solidification of radioactive waste. , 2022, , 449-468.		1
27	Comment on "Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilizationâ€, by Farid and Rahman. Materials Chemistry and Physics, 2017, 192, 29-32.	4.0	0
28	Use of WetSEM® capsules for convenient multimodal scanning electron microscopy, energy dispersive X-ray analysis, and micro Raman spectroscopy characterisation of technetium oxides. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 1313-1318.	1.5	0
29	Synthesis, Characterisation and Dissolution of Simulant Chernobyl and Fukushima Fuel Debris. , 2020,		О