
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544759/publications.pdf Version: 2024-02-01

IVANA MUETTO

#	Article	IF	CITATIONS
1	Silica Nanoparticle Internalization Improves Chemotactic Behaviour of Human Mesenchymal Stem Cells Acting on the SDF1α/CXCR4 Axis. Biomedicines, 2022, 10, 336.	3.2	6
2	Fluorescence Studies: A9 Peptide, Functionalized with a Fluorogenic Probe, Interacts with Its Receptor Model HER2-DIVMP. ACS Medicinal Chemistry Letters, 2022, 13, 807-811.	2.8	0
3	Red Upconverter Nanocrystals Functionalized with Verteporfin for Photodynamic Therapy Triggered by Upconversion. International Journal of Molecular Sciences, 2022, 23, 6951.	4.1	2
4	Bifunctional hybrid organosiliceous catalysts for aldol condensation – hydrogenation tandem reactions of furfural in continuous-flow reactor. Applied Catalysis A: General, 2022, 643, 118710.	4.3	4
5	Rational design of bifunctional hierarchical Pd/SAPO-5 for the synthesis of tetrahydrofuran derivatives from furfural. Journal of Catalysis, 2021, 397, 75-89.	6.2	7
6	Predicting the Conformation of Organic Catalysts Grafted on Silica Surfaces with Different Numbers of Tethering Chains: The Silicopodality Concept. Journal of Physical Chemistry C, 2021, 125, 21199-21210.	3.1	2
7	Single-component panchromatic white light generation, and tuneable excimer-like visible orange and NIR emission in a Dy quinolinolate complex. Journal of Materials Chemistry C, 2021, 9, 15641-15648.	5.5	7
8	Adsorption Features of Various Inorganic Materials for the Drug Removal from Water and Synthetic Urine Medium: A Multi-Technique Time-Resolved In Situ Investigation. Materials, 2021, 14, 6196.	2.9	3
9	Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications. ChemistryOpen, 2021, 10, 1251-1259.	1.9	15
10	Verteporfin-Loaded Mesoporous Silica Nanoparticles' Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and Micrometastasis In Vivo. International Journal of Molecular Sciences, 2021, 22, 13443.	4.1	6
11	Vis-NIR luminescent lanthanide-doped core-shell nanoparticles for imaging and photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112840.	3.9	4
12	The Significance of Metal Coordination in Imidazoleâ€Functionalized Metal–Organic Frameworks for Carbon Dioxide Utilization. Chemistry - A European Journal, 2020, 26, 13606-13610.	3.3	5
13	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie, 2020, 132, 19729-19737.	2.0	2
14	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie - International Edition, 2020, 59, 19561-19569.	13.8	11
15	A smart use of biomass derivatives to template an <i>ad hoc</i> hierarchical SAPO-5 acid catalyst. RSC Advances, 2020, 10, 38578-38582.	3.6	0
16	Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials, 2019, 9, 1575.	4.1	26
17	Verteporfin-loaded mesoporous silica nanoparticles inhibit mouse melanoma proliferation in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111533.	3.8	28
18	Integrated Theoretical and Empirical Studies for Probing Substrate–Framework Interactions in Hierarchical Catalysts. Chemistry - A European Journal, 2019, 25, 9938-9947.	3.3	7

#	Article	IF	CITATIONS
19	Influence of Silicodactyly in the Preparation of Hybrid Materials. Molecules, 2019, 24, 848.	3.8	5
20	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	4.1	1
21	Hybrid catalysts based on N-heterocyclic carbene anchored on hierarchical zeolites. RSC Advances, 2019, 9, 35336-35344.	3.6	5
22	Hierarchical SAPOâ€34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates. ChemistryOpen, 2018, 7, 297-301.	1.9	19
23	Structure and Host–Guest Interactions of Perylene–Diimide Dyes in Zeolite L Nanochannels. Journal of Physical Chemistry C, 2018, 122, 3401-3418.	3.1	22
24	Mesoporous silica nanoparticles incorporating squaraine-based photosensitizers: a combined experimental and computational approach. Dalton Transactions, 2018, 47, 3038-3046.	3.3	24
25	In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO2-to-DME Conversion. Materials, 2018, 11, 2275.	2.9	28
26	Magnetic and Thermal Characterization of Core-Shell Fe-Oxide@SiO ₂ Nanoparticles for Hyperthermia Applications. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2018, 2, 257-261.	3.4	7
27	Strategies to Obtain Encapsulation and Controlled Release of Pentamidine in Mesoporous Silica Nanoparticles. Pharmaceutics, 2018, 10, 195.	4.5	25
28	Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPOâ€34 with Tunable Acid Properties. Chemistry - A European Journal, 2017, 23, 9952-9961.	3.3	38
29	Direct fluorimetric characterisation of dyes in ancient purple codices. Microchemical Journal, 2017, 135, 122-128.	4.5	8
30	Facile synthesis of NIR and Visible luminescent Sm 3+ doped lutetium oxide nanoparticles. Materials Research Bulletin, 2017, 86, 220-227.	5.2	8
31	Mesoporous Silica Nanoparticles-Based Nanoplatforms for Photodynamic Therapy. Advanced Science Letters, 2017, 23, 5837-5840.	0.2	2
32	Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles. Molecules, 2016, 21, 522.	3.8	30
33	Synthesis of poly(<i>N</i> â€isopropylacrylamide) by distillation precipitation polymerization and quantitative grafting on mesoporous silica. Journal of Applied Polymer Science, 2016, 133, .	2.6	41
34	Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. International Journal of Pharmaceutics, 2016, 511, 446-454.	5.2	79
35	Verteporfin based silica nanoplatform for photodynamic therapy. ChemistrySelect, 2016, 1, 127-131.	1.5	9
36	Mesoporous nanocarriers for the loading and stabilization of 5-aminolevulinic acid. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	4

#	Article	lF	CITATIONS
37	Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence. Inorganic Chemistry, 2016, 55, 8576-8586.	4.0	38
38	lonosilicas as efficient adsorbents for the separation of diclofenac and sulindac from aqueous media. New Journal of Chemistry, 2016, 40, 7620-7626.	2.8	22
39	Experimental and first-principles IR characterization of quercetin adsorbed on a silica surface. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	4
40	Optimized Rhodamine B labeled mesoporous silica nanoparticles as fluorescent scaffolds for the immobilization of photosensitizers: a theranostic platform for optical imaging and photodynamic therapy. Physical Chemistry Chemical Physics, 2016, 18, 9042-9052.	2.8	35
41	Hybrid drug carriers with temperature-controlled on–off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. Reactive and Functional Polymers, 2016, 98, 31-37.	4.1	61
42	Controlled postâ€synthesis grafting of thermoresponsive poly(<i>N</i> â€isopropylacrylamide) on mesoporous silica nanoparticles. Polymers for Advanced Technologies, 2015, 26, 1070-1075.	3.2	30
43	Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 116-125.	4.3	128
44	The protective effect of the mesoporous host on the photo oxidation of fluorescent guests: a UV-Vis spectroscopy study. Physical Chemistry Chemical Physics, 2014, 16, 12172-12177.	2.8	8
45	NIR Persistent Luminescence of Lanthanide Ion-Doped Rare-Earth Oxycarbonates: The Effect of Dopants. ACS Applied Materials & Interfaces, 2014, 6, 17346-17351.	8.0	59
46	Immobilisation of Zinc porphyrins on mesoporous SBA-15: Effect of bulky substituents on the surface interaction. Microporous and Mesoporous Materials, 2014, 193, 103-110.	4.4	10
47	MCM-41 as a useful vector for rutin topical formulations: Synthesis, characterization and testing. International Journal of Pharmaceutics, 2013, 457, 177-186.	5.2	59
48	Unravelling the structure and reactivity of supported Ni particles in Ni-CeZrO2 catalysts. Applied Catalysis B: Environmental, 2013, 138-139, 353-361.	20.2	27
49	Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization. Journal of Colloid and Interface Science, 2013, 393, 109-118.	9.4	84
50	Self-Absorption and Luminescence Quantum Yields of Dye-Zeolite L Composites. Journal of Physical Chemistry C, 2013, 117, 23034-23047.	3.1	25
51	Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: a physico-chemical characterization. Research on Chemical Intermediates, 2012, 38, 785-794.	2.7	33
52	Primary amino-functionalized N-heterocyclic carbene ligands as support for Au(i)â< Au(i) interactions: structural, electrochemical, spectroscopic and computational studies of the dinuclear [Au2(NH2(CH2)2imMe)2][NO3]2. Dalton Transactions, 2012, 41, 2445.	3.3	14
53	Mesoporous silica as a carrier for topical application: the Trolox case study. Physical Chemistry Chemical Physics, 2012, 14, 11318.	2.8	31
54	Bright photoluminescent hybrid mesostructured silica nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 10015.	2.8	20

#	Article	IF	CITATIONS
55	Photoactive Ru Complex Embedded in Mesostructured MCM-41 Nanoparticles. Journal of Fluorescence, 2011, 21, 901-909.	2.5	8
56	Behaviour of Fluorescence Emission of Cyanine Dyes, Cyanine Based Fluorescent Nanoparticles and CdSe/ZnS Quantum Dots in Water Solution Upon Specific Thermal Treatments. Journal of Fluorescence, 2011, 21, 929-936.	2.5	5
57	New Potent Fluorescent Analogues of Strigolactones: Synthesis and Biological Activity in Parasitic Weed Germination and Fungal Branching. European Journal of Organic Chemistry, 2011, 2011, 3781-3793.	2.4	69
58	Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: Photophysical characterization and cell tests. Dyes and Pigments, 2010, 84, 121-127.	3.7	89
59	The design, synthesis and characterization of a novel acceptor for real time polymerase chain reaction using both computational and experimental approaches. Dyes and Pigments, 2009, 83, 111-120.	3.7	11
60	Hybrid Cyanineâ^'Silica Nanoparticles: Homogeneous Photoemission Behavior of Entrapped Fluorophores and Consequent High Brightness Enhancement. Journal of Physical Chemistry C, 2009, 113, 21048-21053.	3.1	38
61	Synthesis, Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium(II) Bis(2,2′-bipyridyl){2-(4-methylpyridin-2-yl)benzo[d]-X-azole} Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 2839-2849.	2.0	23