Christopher Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254459/publications.pdf

Version: 2024-02-01

119 papers 7,765 citations

53 h-index 85 g-index

127 all docs

127
docs citations

127 times ranked

6111 citing authors

#	Article	IF	CITATIONS
1	Biologics for tendon repair. Advanced Drug Delivery Reviews, 2015, 84, 222-239.	6.6	500
2	Progress in intra-articular therapy. Nature Reviews Rheumatology, 2014, 10, 11-22.	3.5	375
3	In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis and Rheumatism, 1997, 40, 1012-1019.	6.7	353
4	1999 Volvo Award Winner in Basic Science Studies. Spine, 1999, 24, 2419.	1.0	314
5	Clinical Trial to Assess the Safety, Feasibility, and Efficacy of Transferring a Potentially Anti-Arthritic Cytokine Gene to Human Joints with Rheumatoid Arthritis. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Human Gene Therapy, 1996, 7, 1261-1280.	1.4	254
6	The Natural History of the Anterior Cruciate Ligament-Deficient Knee. American Journal of Sports Medicine, 1997, 25, 751-754.	1.9	223
7	Gene transfer to human joints: Progress toward a gene therapy of arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8698-8703.	3.3	198
8	Gene therapy approaches to regenerating the musculoskeletal system. Nature Reviews Rheumatology, 2015, 11, 234-242.	3.5	183
9	Adenovirus-Mediated Gene Transfer to Nucleus Pulposus Cells. Spine, 1998, 23, 2437-2442.	1.0	158
10	Gene-Induced Chondrogenesis of Primary Mesenchymal Stem Cells in vitro. Molecular Therapy, 2005, 12, 219-228.	3.7	140
11	Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis and Cartilage, 1997, 5, 139-143.	0.6	135
12	Direct Percutaneous Gene Delivery to Enhance Healing of Segmental Bone Defects. Journal of Bone and Joint Surgery - Series A, 2006, 88, 355-365.	1.4	125
13	Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Research and Therapy, 2009, 11, R148.	1.6	123
14	Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Therapeutic Advances in Musculoskeletal Disease, 2017, 9, 183-196.	1.2	119
15	Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis and Rheumatism, 1984, 27, 200-207.	6.7	113
16	Gene Transfer Approaches to the Healing of Bone and Cartilage. Molecular Therapy, 2002, 6, 141-147.	3.7	113
17	A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing. Frontiers in Physiology, 2016, 7, 678.	1.3	113
18	Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty. Journal of Orthopaedic Research, 2009, 27, 42-49.	1.2	108

#	Article	IF	Citations
19	Interleukm-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Annals of Neurology, 1996, 39, 123-127.	2.8	107
20	Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis and Rheumatism, 2000, 43, 2563-2570.	6.7	107
21	Increased matrix synthesis following adenoviral transfer of a transforming growth factor ?1 gene into articular chondrocytes. Journal of Orthopaedic Research, 2000, 18, 585-592.	1.2	107
22	Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Research, 2003, 5, R132.	2.0	105
23	Enhanced <i>In Vitro</i> Chondrogenesis of Primary Mesenchymal Stem Cells by Combined Gene Transfer. Tissue Engineering - Part A, 2009, 15, 1127-1139.	1.6	101
24	Insulinlike Growth Factor-I Gene Therapy Applications for Cartilage Repair. Clinical Orthopaedics and Related Research, 2000, 379, S201-S213.	0.7	100
25	Gene Delivery to Joints by Intra-Articular Injection. Human Gene Therapy, 2018, 29, 2-14.	1.4	92
26	Mesenchymal Stem Cell Characteristics of Human Anterior Cruciate Ligament Outgrowth Cells. Tissue Engineering - Part A, 2011, 17, 1375-1388.	1.6	91
27	Accelerated Healing of the Rat Achilles Tendon in Response to Autologous Conditioned Serum. American Journal of Sports Medicine, 2009, 37, 2117-2125.	1.9	88
28	Cytokines and the Role They Play in the Healing of Ligaments and Tendons. Sports Medicine, 1999, 28, 71-76.	3.1	86
29	Direct Adenovirus-Mediated Insulin-Like Growth Factor I Gene Transfer Enhances Transplant Chondrocyte Function. Human Gene Therapy, 2001, 12, 117-129.	1.4	84
30	Effects of short-term glucocorticoid treatment on changes in cartilage matrix degradation and chondrocyte gene expression induced by mechanical injury and inflammatory cytokines. Arthritis Research and Therapy, 2011, 13, R142.	1.6	83
31	Transfer of LacZ Marker Gene to the Meniscus*. Journal of Bone and Joint Surgery - Series A, 1999, 81, 918-25.	1.4	82
32	A gene therapy approach to accelerating bone healing. Knee Surgery, Sports Traumatology, Arthroscopy, 1999, 7, 197-202.	2.3	80
33	Genetically Enhanced Engineering of Meniscus Tissue UsingEx VivoDelivery of Transforming Growth Factor-Î ² 1 Complementary Deoxyribonucleic Acid. Tissue Engineering, 2007, 13, 2227-2237.	4.9	79
34	Arthritis gene therapy's first death. Arthritis Research and Therapy, 2008, 10, 110.	1.6	78
35	Orthopedic Gene Therapy in 2008. Molecular Therapy, 2009, 17, 231-244.	3.7	78
36	Potential Biologic Therapies for the Intervertebral Disc. Journal of Bone and Joint Surgery - Series A, 2006, 88, 95-98.	1.4	76

#	Article	IF	CITATIONS
37	Advances in Regenerative Orthopedics. Mayo Clinic Proceedings, 2013, 88, 1323-1339.	1.4	7 5
38	Clinical Responses to Gene Therapy in Joints of Two Subjects with Rheumatoid Arthritis. Human Gene Therapy, 2009, 20, 97-101.	1.4	71
39	Gene therapy for bone healing. Expert Reviews in Molecular Medicine, 2010, 12, e18.	1.6	70
40	Arthritis gene therapy and its tortuous path into the clinic. Translational Research, 2013, 161, 205-216.	2.2	70
41	HIG-82: An established cell line from rabbit periarticular soft tissue, which retains the "activatable― phenotype. In Vitro Cellular & Developmental Biology, 1988, 24, 1015-1022.	1.0	69
42	Gene therapy for the regeneration of bone. Injury, 2011, 42, 599-604.	0.7	67
43	THE 2003 NICOLAS ANDRY AWARD: Orthopaedic Gene Therapy. Clinical Orthopaedics and Related Research, 2004, 429, 316-329.	0.7	66
44	Intraâ€articular dexamethasone to inhibit the development of postâ€traumatic osteoarthritis. Journal of Orthopaedic Research, 2017, 35, 406-411.	1.2	65
45	Potential Role of Direct Adenoviral Gene Transfer in Enhancing Fracture Repair. Clinical Orthopaedics and Related Research, 2000, 379, S120-S125.	0.7	62
46	Healing of Segmental Bone Defects by Direct Percutaneous Gene Delivery: Effect of Vector Dose. Human Gene Therapy, 2007, 18, 907-915.	1.4	61
47	Improved Healing of Large Segmental Defects in the Rat Femur by Reverse Dynamization in the Presence of Bone Morphogenetic Protein-2. Journal of Bone and Joint Surgery - Series A, 2012, 94, 2063-2073.	1.4	61
48	Getting arthritis gene therapy into the clinic. Nature Reviews Rheumatology, 2011, 7, 244-249.	3.5	60
49	Gene therapy for arthritis: What next?. Arthritis and Rheumatism, 2006, 54, 1714-1729.	6.7	59
50	Novel Biological Approaches to the Intra-Articular Treatment of Osteoarthritis. BioDrugs, 2005, 19, 355-362.	2.2	58
51	Gene Therapy for the Treatment of Musculoskeletal Diseases. Journal of the American Academy of Orthopaedic Surgeons, The, 2005, 13, 230-242.	1.1	58
52	Adenoviral mediated delivery of FAS ligand to arthritic joints causes extensive apoptosis in the synovial lining. Journal of Gene Medicine, 2000, 2, 210-219.	1.4	57
53	Effect of BMP-12, TGF- \hat{l}^21 and autologous conditioned serum on growth factor expression in Achilles tendon healing. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1907-1914.	2.3	57
54	Improvement of tendon repair using muscle grafts transduced with TGF-β1 cDNA., 2012, 23, 94-102.		50

#	Article	IF	CITATIONS
55	Barriers to the Clinical Translation of Orthopedic Tissue Engineering. Tissue Engineering - Part B: Reviews, 2011, 17, 437-441.	2.5	48
56	Gene transfer to the patellar tendon. Knee Surgery, Sports Traumatology, Arthroscopy, 1997, 5, 118-123.	2.3	47
57	Autologous Conditioned Serum. Physical Medicine and Rehabilitation Clinics of North America, 2016, 27, 893-908.	0.7	45
58	Effects of cytokine gene therapy on particulate-induced inflammation in the murine air pouch. Inflammation, 2001, 25, 361-372.	1.7	43
59	A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Research, 2003, 5, R301.	2.0	43
60	Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity. Cartilage, 2013, 4, 63-74.	1.4	43
61	Retroviral Vectors for Use in Human Gene Therapy for Cancer, Gaucher Disease, and Arthritis. Annals of the New York Academy of Sciences, 1994, 716, 72-89.	1.8	39
62	Gene therapies for osteoarthritis. Current Rheumatology Reports, 2004, 6, 31-40.	2.1	39
63	EWS-FLI-1-Targeted Cytotoxic T-cell Killing of Multiple Tumor Types Belonging to the Ewing Sarcoma Family of Tumors. Clinical Cancer Research, 2012, 18, 5341-5351.	3.2	39
64	Reverse Dynamization. Journal of Bone and Joint Surgery - Series A, 2016, 98, 677-687.	1.4	39
65	Arthritis gene therapy is becoming a reality. Nature Reviews Rheumatology, 2018, 14, 381-382.	3.5	39
66	Gene Therapy for Osteoarthritis: Pharmacokinetics of Intra-Articular Self-Complementary Adeno-Associated Virus Interleukin-1 Receptor Antagonist Delivery in an Equine Model. Human Gene Therapy Clinical Development, 2018, 29, 90-100.	3.2	38
67	The Role of the Paratenon in Achilles Tendon Healing: A Study in Rats. American Journal of Sports Medicine, 2018, 46, 1214-1219.	1.9	36
68	An Improved, Chemically Modified RNA Encoding BMP-2 Enhances Osteogenesis <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2019, 25, 131-144.	1.6	36
69	Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15052.	1.8	35
70	Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Research and Therapy, 2009, 11, 209.	1.6	34
71	Gene mediated insulin-like growth factor-I delivery to the synovium. Journal of Orthopaedic Research, 2001, 19, 759-767.	1.2	31
72	Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. International Orthopaedics, 2011, 35, 599-605.	0.9	31

#	Article	IF	Citations
73	Evaluation of BMPâ€⊋ geneâ€activated muscle grafts for cranial defect repair. Journal of Orthopaedic Research, 2012, 30, 1095-1102.	1.2	31
74	Self-Complementary Adeno-Associated Virus–Mediated Interleukin-1 Receptor Antagonist Gene Delivery for the Treatment of Osteoarthritis: Test of Efficacy in an Equine Model. Human Gene Therapy Clinical Development, 2018, 29, 101-112.	3.2	31
75	Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon. Journal of Histochemistry and Cytochemistry, 2021, 69, 633-643.	1.3	29
76	Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Science Advances, 2022, 8, eabl6242.	4.7	29
77	Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. International Orthopaedics, 2014, 38, 1761-1769.	0.9	28
78	Contribution of Implanted, Genetically Modified Muscle Progenitor Cells Expressing BMP-2 to New Bone Formation in a Rat Osseous Defect. Molecular Therapy, 2018, 26, 208-218.	3.7	24
79	Taking the Next Steps in Regenerative Rehabilitation: Establishment of a New Interdisciplinary Field. Archives of Physical Medicine and Rehabilitation, 2020, 101, 917-923.	0.5	24
80	Gene therapy for bone healing: lessons learned and new approaches. Translational Research, 2021, 236, 1-16.	2.2	24
81	Reverse Dynamization: A Novel Approach to Bone Healing. Journal of the American Academy of Orthopaedic Surgeons, The, 2016, 24, e60-e61.	1.1	22
82	The vicissitudes of gene therapy. Bone and Joint Research, 2019, 8, 469-471.	1.3	21
83	Gene Therapy to Enhance Bone and Cartilage Repair in Orthopaedic Surgery. Current Gene Therapy, 2018, 18, 154-170.	0.9	21
84	In Vitro Gene Transfer to Chondrocytes and Synovial Fibroblasts by Adenoviral Vectors., 2004, 100, 147-164.		19
85	Gene therapy for rheumatoid arthritis. Expert Opinion on Biological Therapy, 2001, 1, 971-978.	1.4	18
86	Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. Journal of Orthopaedic Research, 2019, 37, 1263-1269.	1.2	18
87	John Hunter and the origins of modern orthopaedic research. Journal of Orthopaedic Research, 2007, 25, 556-560.	1.2	16
88	Arthritis Gene Therapy Approved in Korea. Journal of the American Academy of Orthopaedic Surgeons, The, 2018, 26, e36-e38.	1.1	16
89	Orthopaedic Gene Therapy. JBJS Reviews, 2021, 9, .	0.8	16
90	Improving translation success of cell-based therapies in orthopaedics. Journal of Orthopaedic Research, 2016, 34, 17-21.	1.2	15

#	Article	IF	Citations
91	Interaction between living bone particles and rhBMPâ€2 in large segmental defect healing in the rat femur. Journal of Orthopaedic Research, 2016, 34, 2137-2145.	1.2	15
92	State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnology Advances, 2018, 36, 1855-1869.	6.0	15
93	Catering to chondrocytes. Science Translational Medicine, 2018, 10, .	5.8	14
94	Adenoviral transduction of human osteoblastic cell cultures: A new perspective for gene therapy of bone diseases. Acta Orthopaedica, 1999, 70, 419-424.	1.4	13
95	Gene therapy for rheumatoid arthritis. Current Rheumatology Reports, 2001, 3, 79-85.	2.1	13
96	GENE THERAPY FOR RHEUMATOID ARTHRITIS. Hand Surgery, 2001, 06, 211-219.	0.6	12
97	Molecular Biology in Orthopaedics: The Advent of Molecular Orthopaedics. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2550.	1.4	12
98	Extended release of proteins following encapsulation in hydroxyapatite/chitosan composite scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2018, 84, 281-289.	3.8	12
99	RNA Therapeutics for Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 9-11.	1.6	12
100	Response of the Injured Tendon to Growth Factors in the Presence or Absence of the Paratenon. American Journal of Sports Medicine, 2019, 47, 462-467.	1.9	12
101	Gene Therapy in Sports Medicine. Sports Medicine, 1998, 25, 73-77.	3.1	11
102	Will arthritis gene therapy become a clinical reality?. Nature Clinical Practice Rheumatology, 2006, 2, 344-345.	3.2	11
103	Meta-analysis Integrated With Multi-omics Data Analysis to Elucidate Pathogenic Mechanisms of Age-Related Knee Osteoarthritis in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1321-1334.	1.7	10
104	Different types of cartilage neotissue fabricated from collagen hydrogels and mesenchymal stromal cells via SOX9, TGFB1 or BMP2 gene transfer. PLoS ONE, 2020, 15, e0237479.	1.1	9
105	Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	9
106	Inhibition, by lanthanides, of neutral proteinases secreted by human, rheumatoid synovium. FEBS Journal, 1985, 151, 29-32.	0.2	8
107	Feasibility of Percutaneous Gene Transfer to an Atrophic Nonunion in a Rabbit. Clinical Orthopaedics and Related Research, 2004, 425, 237-243.	0.7	8
108	Platelet-Rich Plasma à la Carte. Journal of Bone and Joint Surgery - Series A, 2013, 95, e80.	1.4	8

#	Article	IF	CITATIONS
109	Gene therapy: what have we accomplished and where do we go from here?. Journal of rheumatology Supplement, The, 2005, 72, 17-20.	2.2	8
110	Adenoviral gene transfer of a singleâ€chain ILâ€23 induces psoriatic arthritis–like symptoms in NOD mice. FASEB Journal, 2019, 33, 9505-9515.	0.2	7
111	Healing with RNA. Injury, 2019, 50, 625-626.	0.7	6
112	Enthesis Healing Is Dependent on Scaffold Interphase Morphology—Results from a Rodent Patellar Model. Cells, 2022, 11, 1752.	1.8	5
113	Native, Living Tissues as Cell Seeded Scaffolds. Annals of Biomedical Engineering, 2015, 43, 787-795.	1.3	3
114	Editorial: Arthritis Gene Therapy Using Interleukinâ€1 Receptor Antagonist. Arthritis and Rheumatology, 2018, 70, 1699-1701.	2.9	3
115	Image Analysis Software as a Strategy to Improve the Radiographic Determination of Fracture Healing. Journal of Orthopaedic Trauma, 2018, 32, e354-e358.	0.7	3
116	Specific, Sensitive, and Stable Reporting of Human Mesenchymal Stromal Cell Chondrogenesis. Tissue Engineering - Part C: Methods, 2019, 25, 176-190.	1.1	3
117	Synovial protein kinase C and its apparent insensitivity to interleukin-1. FEBS Journal, 1992, 209, 81-88.	0.2	2
118	Prevalence of AAV2.5 neutralizing antibodies in synovial fluid and serum of patients with osteoarthritis. Gene Therapy, 2022, , .	2.3	2
119	Use of the Rat as a Model in Regenerative Medicine. , 2020, , 1077-1105.		0