
Vasily N Sukhorukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating mTOR Signaling as a Promising Therapeutic Strategy for Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 1153.	4.1	11
2	Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. International Journal of Molecular Sciences, 2022, 23, 1332.	4.1	13
3	Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. International Journal of Molecular Sciences, 2022, 23, 6890.	4.1	15
4	Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. International Journal of Molecular Sciences, 2022, 23, 6926.	4.1	2
5	The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 7863.	4.1	14
6	Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomolecular Concepts, 2021, 12, 55-67.	2.2	6
7	Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Current Pharmaceutical Design, 2021, 27, 276-292.	1.9	5
8	Modern Concepts of Molecular Biology in Search of Biomarkers for Laboratory Diagnostics and Drug Therapy of Non-infectious Diseases. Current Pharmaceutical Design, 2021, 27, 141-142.	1.9	1
9	Pro-inflammatory molecules induce cholesterol accumulation in macrophages: Role of inflammatory response in foam cell formation. Atherosclerosis, 2021, 320, 129-130.	0.8	0
10	Genetic and Epigenetic Biomarkers for Diagnosis, Prognosis and Treatment of Metabolic Syndrome. Current Pharmaceutical Design, 2021, 27, 3729-3740.	1.9	9
11	The effect of interleukins on the accumulation of cholesterol in macrophages obtained from donors. Atherosclerosis, 2021, 331, e71.	0.8	0
12	Morphological characteristics of thoracic aortic aneurysms. Atherosclerosis, 2021, 331, e246.	0.8	0
13	The interplay between ER stress, inflammation, and lipid metabolism. Atherosclerosis, 2021, 331, e134.	0.8	0
14	Approach to edit mitochondrial DNA mutations associated with atherosclerosis. Atherosclerosis, 2021, 331, e70-e71.	0.8	1
15	Molecular Targets Used for Diagnostics, Treatment and Prediction of Somatic Diseases: Special Focus on Tumor Stroma Biomarkers. Current Pharmaceutical Design, 2021, 27, 3083-3083.	1.9	0
16	Thoracic Aortic Aneurysm: Blood Pressure and Inflammation as Key Factors in the Development of Aneurysm Dissection. Current Pharmaceutical Design, 2021, 27, 3122-3127.	1.9	14
17	Genetic and Epigenetic Biomarkers for Diagnosis, Prognosis, and Treatment of Global Diseases. Current Pharmaceutical Design, 2021, 27, 3667-3667.	1.9	0
18	Molecular Pathogenesis and the Possible Role of Mitochondrial Heteroplasmy in Thoracic Aortic Aneurysm. Life, 2021, 11, 1395.	2.4	1

VASILY N SUKHORUKOV

#	Article	IF	CITATIONS
19	A Novel Insight at Atherogenesis: The Role of Microbiome. Frontiers in Cell and Developmental Biology, 2020, 8, 586189.	3.7	19
20	Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response. Biomedicines, 2020, 8, 210.	3.2	23
21	Microarray analysis of peripheral blood monocytes in patients with familial hypercholesterolemia and peripheral artery disease. Atherosclerosis, 2020, 315, e188-e189.	0.8	Ο
22	Approach to the creation of mitochondrial therapy of atherosclerosis. Atherosclerosis, 2020, 315, e186.	0.8	0
23	Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines, 2020, 8, 262.	3.2	57
24	Thoracic Aortic Aneurysm and Factors Affecting Aortic Dissection. Journal of Personalized Medicine, 2020, 10, 153.	2.5	11
25	Current Trends in Vascular Biology and Atherothrombosis. Current Pharmaceutical Design, 2020, 26, 6-10.	1.9	1
26	Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells, 2020, 9, 584.	4.1	67
27	Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis. International Journal of Molecular Sciences, 2020, 21, 817.	4.1	17
28	Signaling Pathways Potentially Responsible for Foam Cell Formation: Cholesterol Accumulation or Inflammatory Response—What is First?. International Journal of Molecular Sciences, 2020, 21, 2716.	4.1	16
29	Medicinal Plants as a Potential and Successful Treatment Option in the Context of Atherosclerosis. Frontiers in Pharmacology, 2020, 11, 403.	3.5	34
30	Cholesterol metabolism in macrophages. Complex Issues of Cardiovascular Diseases, 2020, 9, 91-101.	0.5	4
31	Prevention of atherosclerosis the role of special diets and functional foods. Frontiers in Bioscience - Scholar, 2020, 12, 57-69.	2.1	1
32	Cell and tissue markers of atherosclerosis. Complex Issues of Cardiovascular Diseases, 2020, 9, 102-113.	0.5	1
33	The role of endoplasmic reticulum stress in atherosclerosis. Complex Issues of Cardiovascular Diseases, 2020, 9, 88-94.	0.5	0
34	Atherosclerosis prevention the role of special diets and functional food. Frontiers in Bioscience - Elite, 2020, 12, 95-101.	1.8	1
35	Master regulators in the foam cell formation; the role of phagocytosis. European Heart Journal, 2020, 41, .	2.2	0
36	Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima. Biomolecules, 2019, 9, 455.	4.0	13

VASILY N SUKHORUKOV

#	Article	IF	CITATIONS
37	The Role Of Effector Proteins In Cellular Cholesterol Efflux. Atherosclerosis, 2019, 287, e222.	0.8	0
38	Genetic and Molecular Approaches to Drug Target Discovery for Treatment of the most Dangerous Diseases that are Rapidly Increasing Globally. Part II. Current Pharmaceutical Design, 2019, 25, 625-626.	1.9	0
39	Genetic and Molecular Approaches to Drug Target Discovery for Treatment of the most Dangerous Diseases that are Rapidly Increasing Globally. Part I. Current Pharmaceutical Design, 2019, 25, 211-212.	1.9	0
40	Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 643-653.	2.4	19
41	Transcriptional Characteristics of Activated Macrophages. Current Pharmaceutical Design, 2019, 25, 213-217.	1.9	10
42	Inhibitors of DNA Methylation and Histone Deacetylation as Epigenetically Active Drugs for Anticancer Therapy. Current Pharmaceutical Design, 2019, 25, 635-641.	1.9	12
43	The role of physical activity in the development of atherosclerotic lesions of the vascular wall. Clinical and Experimental Morphology, 2019, 8, 25-31.	0.2	2
44	Translation of Basic Research into Clinical Practice: Focus on Cell-Based Diagnostics and Therapy. Current Pharmaceutical Design, 2018, 24, 3005-3007.	1.9	0
45	Current Approaches to Diagnostics and Therapies of Chronic Diseases: Focus on Molecular and Cell Biology. Current Pharmaceutical Design, 2018, 24, 2757-2759.	1.9	Ο
46	Transcriptome analysis of human macrophages reveals genes regulating cellular cholesterol efflux. Atherosclerosis, 2018, 275, e48.	0.8	0
47	HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages. Experimental and Molecular Pathology, 2018, 105, 202-207.	2.1	11
48	Unsaturated, low-abundant species of HDL (Lyso)phospholipids are most affected by ST segment elevation myocardial infarction. Atherosclerosis, 2018, 275, e56-e57.	0.8	0
49	Diagnostics and Therapy of Human Diseases - Focus on Sialidases. Current Pharmaceutical Design, 2018, 24, 2870-2875.	1.9	6
50	Analysis of Apolipoprotein B Protein of Circulating Multiple-Modified Low-Density Lipoprotein. International Journal of Angiology, 2017, 26, 049-052.	0.6	2
51	Sialylation of human plasma lipoproteins as a key determinant of biological function. Atherosclerosis, 2017, 263, e91-e92.	0.8	0
52	Poor glycemic control in type 2 diabetes enhances functional and compositional alterations of small, dense HDL3c. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 188-195.	2.4	31
53	Sialidases: Therapeutic and Antiatherogenic Potential. Current Pharmaceutical Design, 2017, 23, 4696-4701.	1.9	8
54	HDL-Targeting Therapeutics: Past, Present and Future. Current Pharmaceutical Design, 2017, 23, 1207-1215.	1.9	17

#	Article	IF	CITATIONS
55	Multiple-modified Low-Density Lipoprotein as Atherogenic Factor of Patients'; Blood: Development of Therapeutic Approaches to Reduce Blood Atherogenicity. Current Pharmaceutical Design, 2017, 23, 932-936.	1.9	13
56	Carbohydrate composition of circulating multiple-modified low-density lipoprotein. Vascular Health and Risk Management, 2016, Volume 12, 379-385.	2.3	9
57	Epigenetic factors in atherogenesis: MicroRNA. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2016, 10, 269-275.	0.4	Ο
58	Lipid composition of circulating multiple-modified low density lipoprotein. Lipids in Health and Disease, 2016, 15, 134.	3.0	35
59	Neuron density in the hippocampus in rat strains with contrasting nervous system excitability after prolonged emotional-pain stress. Neuroscience and Behavioral Physiology, 2008, 38, 355-357.	0.4	6
60	Chemical composition of circulating native and desialylated low density lipoprotein: what is the difference?. Vessel Plus, 0, , .	0.4	23